

MATHEMATICS

India's \#1
MATHEMATICS MONTHLY

YOUR PREPARATION IS INCOMPLETE WITHOUT RIGHT GUIDANCE \& ASSESSMENT

Join Most Trusted

Distance Learning Programme
For JeE (Advanced) IJEE (Main) |
NeET (UGU) / AlIMS I NTSE I Olympiads | Class $6^{\prime \prime \prime}$ to $12^{\text {mi }}$

$m t G$

CBSE CHAMPION Chapterwise -Topicwise Solved Papers

CBSE CHAMPION Chapterwise-Topicwise Solved Papers Series contains topicwise questions and solutions asked over last decade in CBSE-Board examination.
Questions are supported with topicwise graphical analysis of previous years CBSE Board questions as well as comprehensive and lucid theory. The questions in each topic have been arranged in descending order as per their marking scheme. Questions from Delhi, All India, Foreign and Compartment papers are included. This ensures that all types of questions that are necessary for Board exam preparation have been covered.
Important feature of these books is that the solutions to all the questions have been given according to CBSE marking scheme. CBSE sample paper and practice papers are also supplemented.
Examination papers for Class-10 and 12 Boards are based on a certain pattern. To excel, studying right is therefore more important than studying hard, which is why we created this series.

Visit
www.mtg.in for latest offers and to buy online!

YOUR SEARCH FOR THE COUNTRY'S BEST

|l|TJEE \& MEDCAL

PREPARATION INSTITUTE ENDS HERE

Over the years, the name Vidyamandir Classes (VMC) has become synonymous with success in entrance examinations. We, at Vidyamandir Classes work with the students, carefully understanding their ability and Subject knowledge, and then teach them to bring them to the required level where they can outshine their peers and realise their dream. The fact that more than 50,000 students appeared for the VMC National Admission tests for limited seats on offer in the last Academic session 2016-2017 is an ample testimony to VMC's popularity and credence within the education community.

NATIONAL ADMISSION CUM SCHOLARSHIP TEST

 FOR IITJEE and MEDICAL PREPARATION

VMC DELHI NCR CENTRES (\dagger Centre for both JEE \& MEDICAL preparation)							www.vidyamandir.com
$\begin{aligned} & \oplus \text { H.O.: Pitampura } \\ & \text { (011) 45221191-93 } \end{aligned}$	$\begin{aligned} & \oplus \text { Anand Vihar } \\ & \text { (011) } 43068924 / 26 \end{aligned}$	Dwarka $\text { (011) } 45221178$	$\begin{aligned} & \oplus \text { Faridabad } \\ & (0129) 4163119 / 20 \end{aligned}$	Ghaziabad 9650495709	$\begin{aligned} & \oplus \text { Greater Noida } \\ & 7290045422 \end{aligned}$	Gurugram (0124) 4148541/42	f/vidyamandirclasses
$\begin{aligned} & \text { † Janakpuri } \\ & 9643407598 \end{aligned}$	$\begin{aligned} & \oplus \text { Noida } \\ & 7878480490 \end{aligned}$	$\begin{aligned} & \text { Punjabi Bagh } \begin{array}{l} \text { Information } \\ 7290045419 \end{array} \\ & \end{aligned}$	$\begin{aligned} & \oplus \text { Safdarjung Enclave } \\ & \text { (011) 41046279/80 } \end{aligned}$	$\begin{aligned} & \text { Kalu Sarai Correspondence } \\ & \text { (011) } 42156441 \end{aligned}$	Vikaspuri 9350902825	Rohtak 9999335300	3 /Vidyamandir_in

ALSO OFFERING, INTENSIFIED CORRESPONDENCE COURSE \& VMC ALL INDIA TEST SERIES (VATS). FOR MORE INFO, CALL (011) 42156441

A Premier Institute in INDIA
 Integrated PUC, +1 \& +2 | NEET | \mid IIT-JEE | AIIMS |JIPMER |EAMCET

FYGFI ACADAMIGS

Bengaluru
IIT-Main \& Advanced | NEET | EAMCET | BITS | AllIMS | JIPMER | CET | COMED-K REGISTRATION OPEN for PUC $/ 12^{\text {mi/ } /+2 \text { Passed Students }}$ ONE YEAR LONO TERM MEDICAL COURSE (PCB) (Repeaters Course)

The only Institute in INDIA successfully conducting "Daily Test"
for NEET(Medical) aspirants.

Features of One Year Long Term Medical Programme
๔ Substantial Medical Entrance Coaching at EXCEL ACADAMICS done by the eminent faculty those who are Medical Guru's in India.
© Starting with very basics and Strengthening them at Fundamentals during coaching.
๔ Maintaining high end competent atmosphere.
© Timely completion of Syllabus and perfect revision.
© Special focus on Physics Numerical questions.

© ©xclusive A.C. Campus with LCD projectors for One Year Long Term Medical Programme.
©6 Daily 6 (Six) hours PCB teaching followed by counselling hours and doubt clarification session.
© Targeting for practicing 3 (Three) Lakh MCQ's Physics, Chemistry \& Biology in this programme.
©6 Separate Weekend Examination for NEET, JIPMER and AIIMS.
(6) Updating to the parents through SMS/email regarding student's attendance, rank and their performance on regular basis.
©(Coaching at Excel Acadamics will be helpful to attend All National Medical Entrance Examinations like NEET, AIIMS, JIPMER etc... along with CET, EAMCET, Kerala PMT, MHCET and COMED-K.
©6 24×7 Library facility with PCB Medical Entrance Study Materials and Magazines.
(6) Brand new high security hostel facility for Boys and Girls.
(6) Periodical Parent, Teacher, Student Meeting.
© Semi-residential facility.
(6) Lowest fee structure including all taxes.

Registration Started for Integrated PUC, CET, NEET and IIT-JEE coaching

for sure success in

EXCEL ACADAMICS, Opp: Peoples Tree Hospital, Sector A, Yalahanka New Town, Bangalore - 560064, KARNATAKA $\cdot * \star$ Contact : $9535656277,9880155284,9036357499$ ***

Skill. Passion. Hard work and determination. As a student sitting for the highly competitive JEE, you need all that. However, only a few will win, very likely with the help of a champion coach.

MTG's Champion Series for JEE is just the coach you need. It will guide you in identifying what's important for success and what's not. And then help you check your readiness with its most comprehensive question bank. So you know your strengths and weaknesses right from the word go and course-correct accordingly. Put simply, MTG's Champion Series will help you manage your preparation effort for JEE for maximum outcome. The best part is you study at a pace you're comfortable with.

Because it's all chapterwise, topicwise.

$m \in G$

This column is aimed at Class XI students so that they can prepare for competitive exams such as JEE Main/Advanced, etc. and be also in command of what is being covered in their school as part of NCERT syllabus. The problems here are a happy blend of the straight and the twisted, the simple and the difficult and the easy and the challenging.
*ALOK KUMAR, B.Tech, IIT Kanpur

- A progression is a sequence whose terms follow a certain pattern i.e., the terms are arranged under a definite rule.

ARITHMETIC PROGRESSION

A sequence of numbers $\left\langle t_{n}\right\rangle$ is said to be in arithmetic progression (A.P.) when the difference $t_{n}-t_{n-1}$ is a constant for all $n \in N$. This constant is called the common difference of the A.P. and is usually denoted by the letter d.
If ' a ' is the first term and ' d ' the common difference, then an A.P. can be represented as $a, a+d, a+2 d, a+3 d, \ldots$.
General Term of an A.P.

- $n^{\text {th }}$ term of an A.P i.e., $T_{n}=a+(n-1) d$.
- $\quad p^{\text {th }}$ term from the end is $(n-p+1)^{\text {th }}$ term from the beginning $=T_{(n-p+1)}=a+(n-p) d$. Also, if last term of an A.P. is l then term from end is $l-(p-1) d$.
Sum of ' n ' Terms of an A.P.
The sum of n terms of the series $a+(a+d)+(a+2 d)+\ldots\{a+(n-1) d\}$ is given by $S_{n}=\frac{n}{2}[2 a+(n-1) d]$ or $S_{n}=\frac{n}{2}(a+l)$,
where $l=$ last term $=a+(n-1) d$

ARITHMETIC MEAN

- \quad Single A.M. between a and b : If a and b are two real numbers then single A.M. between a and b is $\frac{a+b}{2}$.
- $\quad n$ A.M.'s between a and b : If $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are n A.M.'s between a and b, then

$$
\begin{aligned}
& A_{1}=a+d=a+\frac{b-a}{n+1}, A_{2}=a+2 d=a+2\left(\frac{b-a}{n+1}\right) \\
& A_{n}=a+n d=a+n\left(\frac{b-a}{n+1}\right)
\end{aligned}
$$

Properties of A.P. : Let $a_{1}, a_{2}, a_{3}, \ldots$. are in A.P. whose common difference is d.

- For a fixed non-zero number $k \in R$

$$
a_{1} \pm k, a_{2} \pm k, a_{3} \pm k, \ldots . . ; k a_{1}, k a_{2}, k a_{3}, \ldots .
$$

$\frac{a_{1}}{k}, \frac{a_{2}}{k}, \frac{a_{3}}{k} \ldots$... will be in A.P., whose common difference will be $d, k d, d / k$ respectively.

- The sum of terms of an A.P. equidistant from the beginning and the end is constant and is equal to sum of first and last term.
i.e. $a_{1}+a_{n}=a_{2}+a_{n-1}=a_{3}+a_{n-2}$ and so on
- If number of terms of any A.P. is odd, then sum of the terms is equal to product of middle term and number of terms.
- If number of terms of any A.P. is even then A.M. of middle two terms is A.M. of first and last term.
- If the number of terms of an A.P. is odd then its middle term is A.M. of first and last term.
- If $a_{1}, a_{2}, \ldots ., a_{n}$ and $b_{1}, b_{2}, \ldots ., b_{n}$ are the two A.P.s. Then $a_{1} \pm b_{1}, a_{2} \pm b_{2}, \ldots . a_{n} \pm b_{n}$ are also A.P.s with common difference $d_{1} \pm d_{2}$, where d_{1} and d_{2} are the common difference of the given A.P.s.
- Three numbers a, b, c are in A.P. iff $2 b=a+c$.

[^0]

GEOMETRIC PROGRESSION (G.P.)

A progression is called a G.P. if the ratio of its each term to its previous term is always constant. If ' a ' be the first term and ' r ' be the common ratio then, a, $a r$, $a r^{2}, \ldots . ., a r^{n-1}$ is a sequence of G.P.
General Term of a G.P.

- $n^{\text {th }}$ term of a G.P. i.e., $T_{n}=a r^{n-1}$.
where common ratio, $r=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\ldots . .$.
- If G.P. consists of ' n ' terms, then $p^{\text {th }}$ term from the end $=(n-p+1)^{\text {th }}$ term from the beginning $=a r^{n-p}$. Also, the $p^{\text {th }}$ term from the end of a G.P. with last term l and common ratio r is $l\left(\frac{1}{r}\right)^{n-1}$.
Sum of First ' n ' Terms of G.P.
Sum of first n terms of a G.P. is given by
- $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ and $S_{n}=\frac{a-l r}{1-r}$, (when $\left.|r|<1\right)$
- $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ and $S_{n}=\frac{l r-a}{r-1}$, (when $\left.|r|>1\right)$
- $S_{n}=n a$, (when $\left.r=1\right)$

Sum of Infinite Terms of G.P.

- When $|r|<1$, (or $-1<\mathrm{r}<1) ; S_{\infty}=\frac{a}{1-r}$
- If $r \geq 1$, then S_{∞} doesn't exist.

GEOMETRIC MEAN

- \quad Single G.M. between a and b : If a and b are two real numbers then single G.M. between a and $b=\sqrt{a b}$.
- $\quad n$ G.M.s between a and b : If $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ are n G.M.'s between a and b, then

$$
\begin{aligned}
& G_{1}=a r=a\left(\frac{b}{a}\right)^{\frac{1}{n+1}}, G_{2}=a r^{2}=a\left(\frac{b}{a}\right)^{\frac{2}{n+1}} \\
& G_{3}=a r^{3}=a\left(\frac{b}{a}\right)^{\frac{3}{n+1}}, \ldots ., G_{n}=a r^{n}=a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}
\end{aligned}
$$

Properties of G.P.

- If all the terms of a G.P. be multiplied or divided by the same non-zero constant, then it remains a G.P., with the same common ratio.
- The reciprocal of the terms of a given G.P. form a G.P. with common ratio as reciprocal of the common ratio of the original G.P.
- If each term of a G.P. with common ratio r be raised to the same power k, the resulting sequence also forms a G.P. with common ratio r^{k}.
- In a finite G.P., the product of terms equidistant from the beginning and the end is always the same and is equal to the product of the first and last term. i.e., if $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in G.P., Then, $a_{1} a_{n}=a_{2} a_{n-1}=a_{3} a_{n-2}=a_{4} a_{n-3}=\ldots=a_{r} a_{n-r+1}$
- If the terms of a given G.P. are chosen at regular intervals, then the new sequence so formed also forms a G.P.
- If $a_{1}, a_{2}, a_{3}, \ldots ., a_{n}, \ldots$. is a G.P. of non-zero, nonnegative terms, then $\log a_{1}, \log a_{2}, \log a_{3}, \ldots ., \log a_{n}$, is an A.P. and vice-versa.
- Three non-zero numbers a, b, c are in G.P., iff $b^{2}=a c$.
- If first term of a G.P. of n terms is a and last term is l, then the product of all terms of the G.P. is $(a l)^{n / 2}$.

HARMONIC PROGRESSION (H.P.)

- A progression is called a harmonic progression (H.P.) if the reciprocals of its terms are in A.P.

General Term of an H.P.

General term T_{n} of H.P. is $\frac{1}{a+(n-1) d}$

HARMONIC MEAN

If three or more numbers are in H.P., then the numbers lying between the first and last are called harmonic means (H.M.'s) between them. For example $1,1 / 3,1 / 5$, $1 / 7,1 / 9$ are in H.P. So $1 / 3,1 / 5$ and $1 / 7$ are three H.M.'s between 1 and $1 / 9$.

- Insertion of harmonic means

- Single H.M. between a and $b=\frac{2 a b}{a+b}$
- H.M. (H) of n non-zero numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is given by $\frac{1}{H}=\frac{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots . .+\frac{1}{a_{n}}}{n}$
- Let a, b be two given numbers and n harmonic means $H_{1}, H_{2}, \ldots ., H_{n}$ are inserted between a and b
Now, $a, H_{1}, H_{2}, \ldots ., H_{n}, b$ are in H.P.
$\Rightarrow \frac{1}{a}, \frac{1}{H_{1}}, \frac{1}{H_{2}}, \ldots ., \frac{1}{H_{n}}, \frac{1}{b}$ are in A.P.

Minimise your efforts to excel in Boards \& Competitive Exams

NCERT EXERCISES+EXEMPLAR SOLUTIONS

A number of questions in School Examinations/Boards, Medical, Engineering Entrance Exams and Olympiads are directly picked from NCERT books. Going by Experts' and Toppers'advice, a thorough revision of NCERT textbooks will definitely widen your chances of selection in any exam.

You may find free NCERT Solutions at many places but why MTG is better-than-the-rest

- Comprehensive Guide that covers entire solutions of NCERT Textbook Questions and NCERT Exemplar Books questions
- Expert answers by experienced teachers who check CBSE Papers
- Error free, Authentic solations with the accurate information
- Complete solution for all the questions
mtG

Available at all leading book shops throughout the country For more information or for help in placing your order: Call 0124-6601200 or email:info@mtg.in

Let D be the common difference of this A.P. Then, $\frac{1}{b}=(n+2)^{\text {th }}$ term $=T_{n+2}$

$$
\frac{1}{b}=\frac{1}{a}+(n+1) D \Rightarrow D=\frac{a-b}{(n+1) a b}
$$

Properties of H.P.

- No term of H.P. can be zero.
- If H is the H.M. between a and b, then
- $\frac{1}{H-a}+\frac{1}{H-b}=\frac{1}{a}+\frac{1}{b}$
- $(H-2 a)(H-2 b)=H^{2}$
- $\frac{H+a}{H-a}+\frac{H+b}{H-b}=2$

ARITHMETICO-GEOMETRIC PROGRESSION(A.G.P)

 The combination of arithmetic and geometric progression is called arithmetico-geometric progression. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is an A.P. and $b_{1}, b_{2}, b_{3}, \ldots, b_{n}$ is a G.P., then the sequence $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}, \ldots, a_{n} b_{n}$ is said to be an arithmetico-geometric sequence.General Term of A.G.P.
The general form of A.G.P is
$a,(a+d) r,(a+2 d) r^{2},(a+3 d) r^{3}, \ldots .$.
$\therefore \quad T_{n}=[a+(n-1) d] r^{n-1}$.
Sum of A.G.P.

- Sum of n terms : The sum of n terms of an arithmetico-geometric sequence $a,(a+d) r$, $(a+2 d) r^{2},(a+3 d) r^{3}, \ldots$. is given by

$$
S_{n}=\left\{\begin{array}{l}
\frac{a}{1-r}+d r \frac{\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{\{a+(n-1) d\} r^{n}}{1-r}, \text { when } r \neq 1 \\
\frac{n}{2}[2 a+(n-1) d], \text { when } r=1
\end{array}\right.
$$

- Sum of infinite sequence :

$$
S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}},|r|<1 .
$$

Method for Finding Sum
This method is applicable for both sum of n terms and sum of infinite number of terms.
First suppose that sum of the series is S, then multiply it by common ratio of the G.P. and subtract. In this way, we shall get a G.P., whose sum can be easily obtained.

Method of Difference
If the differences of the successive terms of a series are in A.P. or G.P., we can find $n^{\text {th }}$ term of the series by the following steps :

- Denote the $n^{\text {th }}$ term by T_{n} and the sum of the series upto n terms by S_{n}.
- Rewrite the given series with each term shifted by one place to the right.
- By subtracting the later series from the former, find T_{n}.
- From T_{n}, S_{n} can be found by appropriate summation.

SPECIAL SERIES

- $1+2+3+\ldots \ldots .+n=\sum_{r=1}^{n} r=\frac{n(n+1)}{2}$
- $1^{2}+2^{2}+3^{2}+\ldots .+n^{2}=\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $1^{3}+2^{3}+3^{3}+4^{3}+\ldots .+n^{3}=\sum_{r=1}^{n} r^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
- $1+3+5+\ldots . .+(2 n-1)=\sum_{r=1}^{n}(2 r-1)=n^{2}$
- $2+4+6+\ldots \ldots .+2 n=\sum_{r=1}^{n} 2 r=n(n+1)$

Properties of Arithmetic, Geometric, Harmonic Means

 between Two Given NumbersLet A, G and H be arithmetic, geometric and harmonic means of two numbers a and b.
Then, $A=\frac{a+b}{2}, G=\sqrt{a b}$ and $H=\frac{2 a b}{a+b}$

- $A \geq G \geq H$
$\because A-G=\frac{a+b}{2}-\sqrt{a b}=\frac{(\sqrt{a}-\sqrt{b})^{2}}{2} \geq 0$
$\Rightarrow A \geq G$
$G-H=\sqrt{a b}-\frac{2 a b}{a+b}=\sqrt{a b}\left(\frac{a+b-2 \sqrt{a b}}{a+b}\right)$
$=\frac{\sqrt{a b}}{a+b}(\sqrt{a}-\sqrt{b})^{2} \geq 0$
$\Rightarrow G \geq H$
From (i) and (ii), we get $A \geq G \geq H$
Note that the equality holds only when $a=b$.
- A, G, H form a G.P., i.e., $G^{2}=A H$
- The equation having a and b as its roots is

$$
x^{2}-(a+b) x+a b=0
$$

$\Rightarrow \quad x^{2}-2 A x+G^{2}=0$

$$
\left[\because \quad A=\frac{a+b}{2} \text { and } G=\sqrt{a b}\right]
$$

The roots a, b are given by $A \pm \sqrt{A^{2}-G^{2}}$.
The equation having a, b, c as its roots is
$x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c=0$
Here $A=\frac{a+b+c}{3}, G=(a b c)^{1 / 3}$ and $\frac{1}{H}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{3}$
$\Rightarrow a+b+c=3 A, a b c=G^{3}$ and $\frac{3 G^{3}}{H}=a b+b c+c a$
$\Rightarrow x^{3}-3 A x^{2}+\frac{3 G^{3}}{H} x-G^{3}=0$

RELATION BETWEEN A.P., G.P. AND H.P.

- If A, G, H be A.M., G.M., H.M. between a and b, then $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\left\{\begin{array}{l}A \text { when } n=0 \\ G \text { when } n=-1 / 2 \\ H \text { when } n=-1\end{array}\right.$
- If A_{1}, A_{2} be two A.M.'s; G_{1}, G_{2} be two G.M.'s and H_{1}, H_{2} be two H.M.'s between two numbers a and b, then $\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}$
- Recognization of A.P., G.P., H.P. : If a, b, c are three successive terms of a sequence.
If $\frac{a-b}{b-c}=\frac{a}{a}$, then a, b, c are in A.P.
If, $\frac{a-b}{b-c}=\frac{a}{b}$, then a, b, c are in G.P.
If, $\frac{a-b}{b-c}=\frac{a}{c}$, then a, b, c are in H.P.
- If number of terms of any A.P./G.P./H.P. is odd, then A.M./G.M./H.M. of first and last terms is middle term of series.
- If number of terms of any A.P./G.P./H.P. is even, then A.M./G.M./H.M. of middle two terms is A.M./G.M./ H.M. of first and last terms respectively.
- If $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a G.P. are in G.P. Then p, q, r are in A.P.
- If a, b, c are in A.P. as well as in G.P. then $a=b=c$.
- If a, b, c are in A.P., then x^{a}, x^{b}, x^{c} will be in G.P. $(x \neq \pm 1)$

IMPORTANT POINTS

- If T_{k} and T_{p} of any A.P. are given, then formula for obtaining T_{n} is $\frac{T_{n}-T_{k}}{n-k}=\frac{T_{p}-T_{k}}{p-k}$.
- If $p T_{p}=q T_{q}$ of an A.P., then $T_{p+q}=0$.
- If $p^{\text {th }}$ term of an A.P. is q and the $q^{\text {th }}$ term is p, then $T_{p+q}=0$ and $T_{n}=p+q-n$.
- If the $p^{\text {th }}$ term of an A.P. is $\frac{1}{q}$ and the $q^{\text {th }}$ term is $\frac{1}{p}$ then $T_{p q}=1$ and $S_{p q}=\frac{1}{2}(p q+1)$
- The common difference of an A.P is given by $d=S_{2}-2 S_{1}$ where S_{2} is the sum of first two terms and S_{1} is the sum of first term or the first term.
- If sum of n terms S_{n} is given then general term $T_{n}=S_{n}-S_{n-1}$, where S_{n-1} is sum of $(n-1)$ terms of A.P.
- If for an A.P. sum of p terms is q and sum of q terms is p, then sum of $(p+q)$ terms is $\{-(p+q)\}$.
- If for an A.P., sum of p terms is equal to sum of q terms, then sum of $(p+q)$ terms is zero.
- Sum of n A.M.'s between a and b is equal to n times the single A.M. between a and b.
i.e., $A_{1}+A_{2}+A_{3}+\ldots . .+A_{n}=n\left(\frac{a+b}{2}\right)$
- If A_{1} and A_{2} are two A.M.s between two numbers a and b, then $A_{1}=\frac{1}{3}(2 a+b), A_{2}=\frac{1}{3}(a+2 b)$.
- Between two numbers, $\frac{\text { Sum of } m \text { A.M.'s }}{\text { Sum of } n \text { A.M.'s }}=\frac{m}{n}$
- If T_{k} and T_{p} of any G.P. are given, then formula for obtaining T_{n} is $\left(\frac{T_{n}}{T_{k}}\right)^{\frac{1}{n-k}}=\left(\frac{T_{p}}{T_{k}}\right)^{\frac{1}{p-k}}$.
- If a, b, c are in G.P. then $\Rightarrow \frac{b}{a}=\frac{c}{b} \Rightarrow \frac{a+b}{a-b}=\frac{b+c}{b-c}$ or $\frac{a-b}{b-c}=\frac{a}{b}$ or $\frac{a+b}{b+c}=\frac{a}{b}$
- Let the first term of a G.P be positive, then if $r>1$, then it is an increasing G.P., but if r is positive and less than 1, i.e. $0<r<1$, then it is a decreasing G.P.
- Let the first term of a G.P. be negative, then if $r>1$, then it is a decreasing G.P., but if $0<r<1$, then it is an increasing G.P.
- Product of n G.M.s between a and b is equal to $n^{\text {th }}$ power of single geometric mean between a and b, i.e., $G_{1} G_{2} G_{3} \ldots . . . G_{n}=(\sqrt{a b})^{n}$
- G.M. of $a_{1} a_{2} a_{3} \ldots a_{n}$ is $\left(a_{1} a_{2} a_{3} \ldots a_{n}\right)^{1 / n}$.
- If G_{1} and G_{2} are two G.M.'s between two numbers a and b is $G_{1}=\left(a^{2} b\right)^{1 / 3}, G_{2}=\left(a b^{2}\right)^{1 / 3}$.
- If H_{1} and H_{2} are two H.M.s between a and b, then $H_{1}=\frac{3 a b}{a+2 b}$ and $H_{2}=\frac{3 a b}{2 a+b}$.

PROBLEMS

Single Correct Answer Type

1. The number of terms in the series
$101+99+97+\ldots+47$ is
(a) 25
(b) 28
(c) 30
(d) 20
2. If $\tan n \theta=\tan m \theta$, then the different values of θ will be in
(a) A.P.
(b) G.P.
(c) H.P.
(d) none of these
3. The sum of integers from 1 to 100 that are divisible by 2 or 5 is
(a) 3000
(b) 3050
(c) 4050
(d) none of these
4. If the sum of n terms of an A.P. is $n A+n^{2} B$, where A, B are constants, then its common difference will be
(a) $A-B$
(b) $A+B$
(c) $2 A$
(d) $2 B$
5. If the $9^{\text {th }}$ term of an A.P. is 35 and $19^{\text {th }}$ is 75 , then its $20^{\text {th }}$ terms will be
(a) 78
(b) 79
(c) 80
(d) 81
6. The $9^{\text {th }}$ term of the series $27+9+5 \frac{2}{5}+3 \frac{6}{7}+\ldots .$. will be
(a) $1 \frac{10}{17}$
(b) $\frac{10}{17}$
(c) $\frac{16}{27}$
(d) $\frac{17}{27}$
7. If a, b, c are in A.P., then $\frac{(a-c)^{2}}{\left(b^{2}-a c\right)}=$
(a) 1
(b) 2
(c) 3
(d) 4
8. If the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ term of an arithmetic sequence are a, b and c respectively, then the value of $[a(q-r)+b(r-p)+c(p-q)]=$
(a) 1
(b) -1
(c) 0
(d) $1 / 2$
9. If p times the $p^{\text {th }}$ term of an A.P. is equal to q times the $q^{\text {th }}$ term of an A.P., then $(p+q)^{\text {th }}$ term is
(a) 0
(b) 1
(c) 2
(d) 3
10. The sums of n terms of two arithmetic series are in the ratio $2 n+3: 6 n+5$, then the ratio of their $13^{\text {th }}$ terms is
(a) $53: 155$
(b) $27: 77$
(c) $29: 83$
(d) $31: 89$
11. Let T_{r} be the $r^{\text {th }}$ term of an A.P. for $r=1,2,3, \ldots .$. If for some positive integers m, n we have $T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, then $T_{m n}$ equals
(a) $\frac{1}{m n}$
(b) $\frac{1}{m}+\frac{1}{n}$ (c) 1
(d) 0
12. If $1, \log _{9}\left(3^{1-x}+2\right), \log _{3}\left(4.3^{x}-1\right)$ are in A.P. then x equals
(a) $\log _{3} 4$
(b) $1-\log _{3} 4$
(c) $1-\log _{4} 3$
(d) $\log _{4} 3$
13. If the ratio of the sum of n terms of two A.P.'s be $(7 n+1):(4 n+27)$, then the ratio of their $11^{\text {th }}$ terms will be
(a) $2: 3$
(b) $3: 4$
(c) $4: 3$
(d) $5: 6$
14. The interior angles of a polygon are in A.P. If the smallest angle be 120° and the common difference be 5°, then the number of sides is
(a) 8
(b) 10
(c) 9
(d) 6
15. If the $p^{\text {th }}$ term of an A.P. be $1 / q$ and $q^{\text {th }}$ term be $1 / p$, then the sum of its $p q^{\text {th }}$ terms will be
(a) $\frac{p q-1}{2}$
(b) $\frac{1-p q}{2}$
(c) $\frac{p q+1}{2}$
(d) $-\frac{p q+1}{2}$
16. If the first, second and last terms of an A.P. be a, b, $2 a$ respectively, then its sum will be
(a) $\frac{a b}{b-a}$
(b) $\frac{a b}{2(b-a)}$
(c) $\frac{3 a b}{2(b-a)}$
(d) $\frac{3 a b}{4(b-a)}$
17. If $a_{1}, a_{2}, \ldots, a_{n}$ are in A.P. with common difference d, then the sum of the following series is $\sin d\left(\operatorname{cosec} a_{1} \cdot \operatorname{cosec} a_{2}+\operatorname{cosec} a_{2} \cdot \operatorname{cosec} a_{3}+\ldots . . .\right.$.

$$
\left.+\operatorname{cosec} a_{n-1} \operatorname{cosec} a_{n}\right)
$$

(a) $\sec a_{1}-\sec a_{n}$
(b) $\cot a_{1}-\cot a_{n}$
(c) $\tan a_{1}-\tan a_{n}$
(d) $\operatorname{cosec} a_{1}-\operatorname{cosec} a_{n}$
18. If the sum of the series $2+5+8+11+\ldots$ is 60100 , then the number of terms are
(a) 100
(b) 200
(c) 150
(d) 250
19. The sum of all natural numbers between 1 and 100 which are multiples of 3 is
(a) 1680
(b) 1683
(c) 1681
(d) 1682
20. If the sum of n terms of an A.P. is $2 n^{2}+5 n$, then the $n^{\text {th }}$ term will be
(a) $4 n+3$
(b) $4 n+5$
(c) $4 n+6$
(d) $4 n+7$
21. The $n^{\text {th }}$ term of an A.P. is $3 n-1$.Choose from the following the sum of its first five terms
(a) 14
(b) 35
(c) 80
(d) 40
22. The sum of the numbers between 100 and 1000 which is divisible by 9 will be
(a) 55350
(b) 57228
(c) 97015
(d) 62140
23. The ratio of sum of m and n terms of an A.P. is $m^{2}: n^{2}$, then the ratio of $m^{\text {th }}$ and $n^{\text {th }}$ term will be
(a) $\frac{m-1}{n-1}$
(b) $\frac{n-1}{m-1}$
(c) $\frac{2 m-1}{2 n-1}$
(d) $\frac{2 n-1}{2 m-1}$
24. The solution of $\log _{\sqrt{3}} x+\log _{\sqrt[4]{3}} x+\log _{\sqrt[6]{3}} x+\ldots . .+\log _{16}^{3} x=36$ is
(a) $x=3$
(b) $x=4 \sqrt{3}$
(c) $x=9$
(d) $x=\sqrt{3}$
25. A series whose $n^{\text {th }}$ term is $\left(\frac{n}{x}\right)+y$, then the sum
of r terms will be
(a) $\left\{\frac{r(r+1)}{2 x}\right\}+r y$
(b) $\left\{\frac{r(r-1)}{2 x}\right\}$
(c) $\left\{\frac{r(r-1)}{2 x}\right\}-r y$
(d) $\left\{\frac{r(r+1)}{2 y}\right\}-r x$
26. The sum of the integers from 1 to 100 which are not divisible by 3 or 5 is
(a) 2489
(b) 4735
(c) 2317
(d) 2632
27. If $a_{1}, a_{2}, \ldots, a_{n+1}$ are in A.P., then
$\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}+\ldots .+\frac{1}{a_{n} a_{n+1}}$ is
(a) $\frac{n-1}{a_{1} a_{n+1}}$
(b) $\frac{1}{a_{1} a_{n+1}}$
(c) $\frac{n+1}{a_{1} a_{n+1}}$
(d) $\frac{n}{a_{1} a_{n+1}}$
28. Let the sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{2 n}$ form an A.P. Then $a_{1}^{2}-a_{2}^{2}+a_{3}^{3}-\ldots .+a_{2 n-1}^{2}-a_{2 n}^{2}=$
(a) $\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)$
(b) $\frac{2 n}{n-1}\left(a_{2 n}^{2}-a_{1}^{2}\right)$
(c) $\frac{n}{n+1}\left(a_{1}^{2}+a_{2 n}^{2}\right)$
(d) None of these
29. The first term of an A.P. of consecutive integers is $p^{2}+1$. The sum of $(2 p+1)$ terms of this series can be expressed as
(a) $(p+1)^{2}$
(b) $(p+1)^{3}$
(c) $(2 p+1)(p+1)^{2}$
(d) $p^{3}+(p+1)^{3}$
30. The number of terms of the A.P. $3,7,11,15 \ldots$..to be taken so that the sum is 406 is
(a) 5
(b) 10
(c) 12
(d) 14
31. Three numbers are in A.P. such that their sum is 18 and sum of their squares is 158 . The greatest number among them is
(a) 10
(b) 11
(c) 12
(d) None of these
32. If $\frac{3+5+7+\ldots . \text { to } n \text { terms }}{5+8+11+\ldots . \text { to } 10 \text { terms }}=7$, then the value of n is
(a) 35
(b) 36
(c) 37
(d) 40
33. If A_{1}, A_{2} be two arithmetic means between $1 / 3$ and $\frac{1}{24}$, then their values are
(a) $\frac{7}{72}, \frac{5}{36}$
(b) $\frac{17}{72}, \frac{5}{36}$
(c) $\frac{7}{36}, \frac{5}{72}$
(d) $\frac{5}{72}, \frac{17}{72}$
34. A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{13}{12}$, then
the numbers are
(a) $\frac{1}{4}, \frac{4}{1}$
(b) $\frac{3}{4}, \frac{4}{3}$
(c) $\frac{2}{5}, \frac{5}{2}$
(d) $\frac{3}{2}, \frac{2}{3}$
35. If A be an arithmetic mean between two numbers and S be the sum of n arithmetic means between the same numbers, then
(a) $S=n A$
(b) $A=n S$
(c) $A=S$
(d) None of these
36. If $f(x+y, x-y)=x y$, then the arithmetic mean of $f(x, y)$ and $f(y, x)$ is
(a) x
(b) y
(c) 0
(d) 1
37. If the sides of a right angled traingle are in A.P., then the sides are proportional to
(a) $1: 2: 3$
(b) $2: 3: 4$
(c) $3: 4: 5$
(d) $4: 5: 6$
38. If the sum of three numbers of a arithmetic sequence is 15 and the sum of their squares is 83 , then the numbers are
(a) $4,5,6$
(b) $3,5,7$
(c) $1,5,9$
(d) $2,5,8$
39. The four arithmetic means between 3 and 23 are
(a) $5,9,11,13$
(b) $7,11,15,19$
(c) $5,11,15,22$
(d) $7,15,19,21$
40. If $\frac{1}{p+q}, \frac{1}{r+p}, \frac{1}{q+r}$ are in A.P., then
(a) p, q, r are in A.P.
(b) p^{2}, q^{2}, r^{2} are in A.P.
(c) $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}$ are in A.P.
(d) None of these
41. If $1, \log _{y} x, \log _{z} y,-15 \log _{x} z$ are in A.P., then
(a) $z^{3}=x$
(b) $x=y^{-1}$
(c) $z^{-3}=y$
(d) $x=y^{-1}=z^{3}$

Multiple Correct Answer Type

42. If in a $\triangle A B C, a, b, c$ are in A.P. then it is necessary that
(a) $\frac{2}{3}<\frac{b}{c}<2$
(b) $\frac{1}{3}<\frac{b}{c}<\frac{2}{3}$
(c) $\frac{2}{3}<\frac{b}{a}<2$
(d) $\frac{1}{3}<\frac{b}{a}<\frac{2}{3}$
43. Let $S_{1}, S_{2}, \ldots, S_{n}$ be the sums of geometric series whose $1^{\text {st }}$ terms are $1,2,3, \ldots ., n$ and common ratios are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots, \frac{1}{n+1}$ respectively. Then
(a) $S_{1}+S_{2}+\ldots .+S_{n}=\frac{n(n+3)}{2}$
(b) $S_{1} \cdot S_{2} \cdot S_{3} \ldots \ldots S_{n}=n+1$
(c) $\frac{1}{S_{1} S_{2}}+\frac{1}{S_{2} S_{3}}+\ldots \cdot \frac{1}{S_{n-1} S_{n}}=\frac{n-1}{2(n+1)}$
(d) $S_{1}^{2} \cdot S_{2}^{3} \cdot S_{3}^{4} \ldots . . S_{n}^{n+1}=\frac{1024}{3}$
44. If $\sum_{r=1}^{n} r(r+1)=\frac{(n+a)(n+b)(n+c)}{3}$, where $a<b<c$, then
(a) $2 b=c$
(b) $a^{3}-8 b^{3}+c^{3}=8 a b c$
(c) c is prime number
(d) $(a+b)^{2}=0$
45. Let $a_{n}=\frac{(111, \ldots 1)}{n \text { times }}$, then
(a) a_{912} is not prime
(b) a_{951} is not prime
(c) a_{480} is not prime
(d) a_{91} is not prime
46. If a, b, c are in H.P., then
(a) $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ will be in H.P.
(b) $\frac{a}{b+c-a}, \frac{b}{c+a-b}, \frac{c}{a+b-c}$ are in H.P.
(c) $\frac{1}{a}+\frac{1}{b+c}, \frac{1}{b}+\frac{1}{c+a}, \frac{1}{c}+\frac{1}{a+b}$ are in H.P.
(d) $\frac{b c}{b+c}, \frac{c a}{c+a}, \frac{a b}{a+b}$ are in H.P.
47. If n be odd or even, then the sum of n terms of the series $1-2+3-4+5-6+\ldots$. will be
(a) $-\frac{n}{2}$
(b) $\frac{n-1}{2}$
(c) $\frac{n+1}{2}$
(d) $\frac{2 n+1}{2}$

Comprehension Type

Paragraph for Q. No. 48 to 52
Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be geometric means between 1 and 1024. Product of geometric means is 2^{45} and sum of arithmetic means is 1025×171.
48. The value of n is
(a) 7
(b) 9
(c) 11
(d) none of these
49. The value of m is
(a) 340
(b) 342
(c) 344
(d) 346
50. The value of $G_{1}+G_{2}+G_{3}+\ldots .+G_{n}$ is
(a) 1022
(b) 2044
(c) 512
(d) none of these
51. The common difference of the progression A_{1}, A_{3}, A_{5}, \ldots, A_{m-1} is
(a) 6
(b) 3
(c) 2
(d) 1
52. The numbers $2 A_{171}, G_{5}^{2}+1,2 A_{172}$ are in
(a) A.P.
(b) G.P.
(c) H.P.
(d) A.G.P.

Paragraph for Q. No. 53 to 55

There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15 and where D and d are the common differences such that $D-d=1$. If $\frac{p}{q}=\frac{7}{8}$ where p and q are the product of the numbers respectively and $d>0$, in the two sets
53. Value of p is
(a) 100
(b) 120
(c) 105
(d) 110
54. Value of q is
(a) 100
(b) 120
(c) 105
(d) 110
55. Value of $D+d$ is
(a) 1
(b) 2
(c) 3
(d) 4

Matrix-Match Type

56. Match the following.

	Column-I	Column-II	
(A)	The sequence $a, b, 10, c, d$ is an arithmetic progression. Then the value of $a+b+c+d$ is	(p)	52
(B)	The sides of right triangle form a three term geometric sequence. The shortest side has length 2. The length of the hypotenuse is of the form $\sqrt{a}+\sqrt{b}$ where a, b $\in N$, then $a^{2}+b^{2}$ equals	(q)	20
(C)	The sum of first three consecutive numbers of an infinite G.P. is 70, if the two extremes be multipled each by 4, and the mean by 5, the products are in A.P. The first term of the G.P. is	(r)	26
(D)	The diagonals of a parallelogram have a measure of 4 and 6 metres. They cut off forming an angle of 60°. If the perimeter of the parallelogram is $2(\sqrt{p}+\sqrt{q})$ where $p, q \in N$ then $(p+q)$ equals	(s)	40

57. Match the following.

Column-I		Column-II	
(A)	Suppose that $F(n+1)=\frac{2 F(n)+1}{2}$ for $n=1,2,3, \ldots$ and $F(1)=2$. Then $F(101)$ equals	(p)	42
(B)	If $a_{1}, a_{2}, a_{3}, \ldots, a_{21}$ are in A.P. and $a_{3}+a_{5}+a_{11}+a_{17}+a_{19}=$ 10 then the value of $\sum_{i=1} a_{i}$ is	(q)	1620
(C)	$10^{\text {th }}$ term of the sequence $S=1+5+13+29+\ldots .$, is	(r)	52
(D)	The sum of all two digit numbers which are not divisible by 2 or 3 is	(s)	2045

58. Match the following.

Column-I		Column-II	
(A)	The arithmetic mean of two positive numbers is 6 and their geometric mean G and harmonic mean H satisfy the relation $G^{2}+3 H=48$, then product of the two number is	(p)	$\frac{240}{77}$

(B)	The sum of the series $\frac{5}{1^{2} .4^{2}}+\frac{11}{4^{2} .7^{2}}+\frac{17}{7^{2} \cdot 10^{2}}+\ldots$ is	(q)	32
(C)	If the first two terms of a Harmonic Progression be $\frac{1}{2}$ and $\frac{1}{3}$ then the Harmonic Mean of the first four terms is	(r)	$1 / 3$
(D)	Geometric mean of 4 and 9	(s)	6

Integer Answer Type

59. If the sum to infinity of a decreasing G.P. with the common ratio x is $6 k$ such that $|x|<1 ; x \neq 0$. The ratio of the fourth term to the second term is $1 / 16$ and the ratio of third term to the square of the second term is $1 / 9$. Find the value of k.
60. The sum of the terms of an infinitely decreasing G.P. is equal to the greatest value of the function $f(x)=x^{3}+3 x-9$ on the interval $[-4,3]$ and the difference between the first and second terms is $f^{\prime}(0)$. Then the value of $3 r$ (where r is common ratio) is

SOLUTIONS

1. (b) : First term $a=101$, common difference $d=-2$ and last term $l=47$
$\therefore T_{l}=a+(n-1) d \Rightarrow 47=101+(n-1)(-2) \Rightarrow n=28$
2. (a): We have $\tan n \theta=\tan m \theta \Rightarrow n \theta=N \pi+(m \theta)$
$\Rightarrow \theta=\frac{N \pi}{n-m}$, putting $N=1,2,3, \ldots$., we get
$\frac{\pi}{n-m}, \frac{2 \pi}{n-m}, \frac{3 \pi}{n-m}, \ldots \ldots$.
$\therefore \quad$ Common difference $(d)=\frac{\pi}{n-m}$
So, different values of θ will be in A.P.
3. (b) : The sum of integers from 1 to 100 that are divisible by 2 or $5=$ sum of series divisible by $2+$ sum of series divisible by 5 - sum of series divisible by 2 and 5.
$=(2+4+6+\ldots .+100)+(5+10+15 \ldots .+100)$

$$
-(10+20+30+\ldots .+100)
$$

$=\frac{50}{2}\{2 \times 2+(50-1) 2\}+\frac{20}{2}\{2 \times 5+(20-1) 5\}$

$$
-\frac{10}{2}\{10 \times 2+(10-1) 10\}
$$

$=2550+1050-550=3050$
4. (d): Given that $S_{n}=n A+n^{2} B$

Putting $n=1,2,3, \ldots$., we get

$$
S_{1}=A+B, S_{2}=2 A+4 B, S_{3}=3 A+9 B \text { and so on }
$$

$\therefore \quad T_{1}=S_{1}=A+B, T_{2}=S_{2}-S_{1}=A+3 B$,
Hence, common difference $(d)=2 B$.
5. (b) : $T_{9}=a+8 d=35$ and $T_{19}=a+18 d=75$

On solving we get $d=4$ and $a=3$
Hence $20^{\text {th }}$ term of an A.P. is $a+19 d=3+19 \times 4=79$.
6. (a): Given series $27+9+5 \frac{2}{5}+3 \frac{6}{7}+\ldots \ldots$
$=27+\frac{27}{3}+\frac{27}{5}+\frac{27}{7}+\ldots . .+\frac{27}{2 n-1}+\ldots \ldots$
$\therefore \quad T_{n}=\frac{27}{2 n-1} \Rightarrow T_{9}=\frac{27}{(2 \times 9)-1}=\frac{27}{17}=1 \frac{10}{17}$
7. (d) : If a, b, c are in A.P. $\Rightarrow 2 b=a+c$

So, $\frac{(a-c)^{2}}{\left(b^{2}-a c\right)}=\frac{(a-c)^{2}}{\left\{\left(\frac{a+c}{2}\right)^{2}-a c\right\}}$

$$
=\frac{(a-c)^{2} 4}{\left[a^{2}+c^{2}+2 a c-4 a c\right]}=\frac{4(a-c)^{2}}{(a-c)^{2}}=4
$$

8. (c)
9. (a)
10. (a): We have $\frac{S_{n_{1}}}{S_{n_{2}}}=\frac{2 n+3}{6 n+5}$
$\Rightarrow \frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{2 n+3}{6 n+5}$
$\Rightarrow \frac{a_{1}+\left(\frac{n-1}{2}\right) d_{1}}{a_{2}+\left(\frac{n-1}{2}\right) d_{2}}=\frac{2 n+3}{6 n+5}$
Put $n=25$ then $\frac{a_{1}+12 d_{1}}{a_{2}+12 d_{2}}=\frac{2(25)+3}{6(25)+5} \Rightarrow \frac{T_{13}}{T_{13_{2}}}=\frac{53}{155}$
11. (c)
12. (b) : The given numbers are in A.P.
$\therefore \quad 2 \log _{9}\left(3^{1-x}+2\right)=\log _{3}\left(4 \cdot 3^{x}-1\right)+1$
$\Rightarrow \quad 2 \log _{3^{2}}\left(3^{1-x}+2\right)=\log _{3}\left(4 \cdot 3^{x}-1\right)+\log _{3} 3$
$\Rightarrow \quad \frac{2}{2} \log _{3}\left(3^{1-x}+2\right)=\log _{3}\left[3\left(4 \cdot 3^{x}-1\right)\right]$
$\Rightarrow \quad 3^{1-x}+2=3\left(4 \cdot 3^{x}-1\right)$
$\Rightarrow \quad \frac{3}{y}+2=12 y-3$, where $y=3^{x}$
$\Rightarrow 12 y^{2}-5 y-3=0$
$y=\frac{-1}{3}$ or $\frac{3}{4} \Rightarrow 3^{x}=\frac{-1}{3}$ or $3^{x}=\frac{3}{4}$
$x=\log _{3}(3 / 4) \Rightarrow x=1-\log _{3} 4$.
13. (c)
14. (c) : Let the number of sides of the polygon be n Then, the sum of interior angles of the polygon
$=(2 n-4) \frac{\pi}{2}=(n-2) \pi$
Since the angles are in A.P. Also, $a=120^{\circ}, d=5$,
$\therefore \quad S_{n}=\frac{n}{2}[2 \times 120+(n-1) 5]=(n-2) 180$
$\Rightarrow n^{2}-25 n+144=0 \Rightarrow(n-9)(n-16)=0 \Rightarrow n=9,16$
But $n=16$ gives $T_{16}=a+15 d=120^{\circ}+15 \cdot 5^{\circ}=195^{\circ}$, which is impossible as interior angle cannot be greater than 180°. Hence $n=9$.
15. (c)
16. (c): We have first term $A=a$

Second term $A+d=b$
and last term $l=2 a$
From (i), (ii) and (iii), $d=(b-a)$ and $n=\frac{b}{b-a}$
Then, $\operatorname{sum}(S)=\frac{n}{2}[a+l]=\frac{b}{2(b-a)}[a+2 a]=\frac{3 a b}{2(b-a)}$
17. (b): As given $d=a_{2}-a_{1}=a_{3}-a_{2}=\ldots .=a_{n}-a_{n-1}$
$\therefore \sin d\left\{\operatorname{cosec} a_{1} \operatorname{cosec} a_{2}+\ldots . .+\operatorname{cosec} a_{n-1} \operatorname{cosec} a_{n}\right\}$
$=\frac{\sin \left(a_{2}-a_{1}\right)}{\sin a_{1} \cdot \sin a_{2}}+\ldots \ldots+\frac{\sin \left(a_{n}-a_{n-1}\right)}{\sin a_{n-1} \sin a_{n}}$
$=\left(\cot a_{1}-\cot a_{2}\right)+\left(\cot a_{2}-\cot a_{3}\right)+\ldots$. $+\left(\cot a_{n-1}-\cot a_{n}\right)$
$=\cot a_{1}-\cot a_{n}$
18. (b) : Given, Series, $2+5+8+11+$ where $a=2, d=3$ and let number of terms is n
$\therefore \quad$ Sum of A.P. $=\frac{n}{2}\{2 a+(n-1) d\}$
$\Rightarrow 60100=\frac{n}{2}\{2 \times 2+(n-1) 3\} \Rightarrow 120200=n(3 n+1)$
$\Rightarrow 3 n^{2}+n-120200=0 \Rightarrow(n-200)(3 n+601)=0$
Hence $n=200$.
19. (b)
20. (a)
21. (d): Here $T_{n}=3 n-1$, putting $n=1,2,3,4,5$ we get first five terms, $2,5,8,11,14$
Hence sum is $2+5+8+11+14=40$.
22. (a) : Series $108+117+\ldots .+999$ is an A.P. where $a=108$, common difference $d=9$,
$n=\frac{999}{9}-\frac{99}{9}=111-11=100$
Hence, required sum $=\frac{100}{2}(108+999)$

$$
=50 \times 1107=55350
$$

23. (c)
24. (d)
25. (a): On putting $n=1,2,3, \ldots$. . we get

First term of the series $a=\frac{1}{x}+y$,
Second term $=\frac{2}{x}+y$ and $d=\left(\frac{2}{x}+y\right)-\left(\frac{1}{x}+y\right)=\frac{1}{x}$
$\therefore \quad$ Sum of r terms of the series

$$
\begin{aligned}
& =\frac{r}{2}\left[2\left(\frac{1}{x}+y\right)+(r-1) \frac{1}{x}\right]=\frac{r}{2}\left[\frac{2}{x}+2 y+\frac{r}{x}-\frac{1}{x}\right] \\
& =\frac{r^{2}-r+2 r}{2 x}+r y=\left[\frac{r(r+1)}{2 x}+r y\right]
\end{aligned}
$$

26. (d): Let $S=1+2+3+\ldots . .+100$
$=\frac{100}{2}(1+100)=50(101)=5050$
Let $S_{1}=3+6+9+12+$. \qquad $+99$
$=3(1+2+3+4+\ldots .+33)=3 \cdot \frac{33}{2}(1+33)=99 \times 17=1683$
Let $S_{2}=5+10+15+$ \qquad $+100$
$=5(1+2+3+\ldots \ldots . .+20)=5 \cdot \frac{20}{2}(1+20)=50 \times 21=1050$
Let $S_{3}=15+30+45+$ \qquad $+90$
$=15(1+2+3+\ldots \ldots . .+6)=15 . \frac{6}{2}(1+6)=45 \times 7=315$
$\therefore \quad$ Required sum $=S-S_{1}-S_{2}+S_{3}$

$$
=5050-1683-1050+315=2632 .
$$

27. (d)
28. (a) : Since $a_{1}, a_{2}, a_{3}, \ldots . . ., a_{2 n}$ form an A.P.
$\therefore \quad a_{2}-a_{1}=a_{4}-a_{3}=\ldots \ldots . .=a_{2 n}-a_{2 n-1}=d$
Here $a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots \ldots .+a_{2 n-1}^{2}-a_{2 n}^{2}$
$=\left(a_{1}-a_{2}\right)\left(a_{1}+a_{2}\right)+\left(a_{3}-a_{4}\right)\left(a_{3}+a_{4}\right)+\ldots \ldots .$.

$$
\ldots \ldots+\left(a_{2 n-1}-a_{2 n}\right)\left(a_{2 n-1}+a_{2 n}\right)
$$

$=-d\left(a_{1}+a_{2}+\ldots \ldots .+a_{2 n}\right)=-d\left\{\frac{2 n}{2}\left(a_{1}+a_{2 n}\right)\right\}$
Also, $2 n=a_{1}+(2 n-1) d \Rightarrow d=\frac{a_{2 n}-a_{1}}{2 n-1}$
Sum is $=\frac{n\left(a_{1}-a_{2 n}\right) \cdot\left(a_{1}+a_{2 n}\right)}{2 n-1}=\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)$
29. (d) : $S_{2 p+1}=\frac{2 p+1}{2}\left\{2\left(p^{2}+1\right)+(2 p+1-1) 1\right\}$
$=\left(\frac{2 p+1}{2}\right)\left(2 p^{2}+2 p+2\right)=(2 p+1)\left(p^{2}+p+1\right)$
$=p^{3}+(p+1)^{3}$
30. (d) : $S=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow 406=\frac{n}{2}[6+(n-1) 4] \Rightarrow 812=n[6+4 n-4]$
$\Rightarrow 812=2 n+4 n^{2} \Rightarrow 406=2 n^{2}+n$
$\Rightarrow 2 n^{2}+n-406=0$
$\Rightarrow n=\frac{-1 \pm \sqrt{1+4 \cdot 2 \cdot 406}}{2 \cdot 2}=\frac{-1 \pm \sqrt{3249}}{4}=\frac{-1 \pm 57}{4}$
$\therefore \quad n=\frac{-1+57}{4}=14$
31. (b)
32. (a)
33. (b) : Here, $\frac{1}{3}, A_{1}, A_{2}, \frac{1}{24}$ will be in A.P.,
then $A_{1}-\frac{1}{3}=\frac{1}{24}-A_{2} \Rightarrow A_{1}+A_{2}=\frac{3}{8}$
Now, A_{1} is a arithmetic mean of $\frac{1}{3}$ and A_{2}, we have
$2 A_{1}=\frac{1}{3}+A_{2} \Rightarrow 2 A_{1}-A_{2}=\frac{1}{3}$
From (i) and (ii), we get, $A_{1}=\frac{17}{72}$ and $A_{2}=\frac{5}{36}$
34. (d): Suppose the required numbers are a and b

Therefore according to the conditions, $a=1 / 6$
and $\frac{a+b}{2}=\frac{13}{12} \Rightarrow a+b=\frac{13}{6}$
$\Rightarrow a+\frac{1}{a}=\frac{13}{6} \Rightarrow 6 a^{2}-13 a+6=0$
$\Rightarrow\left(a-\frac{3}{2}\right)\left(a-\frac{2}{3}\right)=0 \Rightarrow a=\frac{3}{2}$ and $b=\frac{2}{3}$
or $a=\frac{2}{3}$ and $b=\frac{3}{2}$.
35. (a)
36. (c) : Let $x+y=u, x-y=v$
$\Rightarrow x=\frac{u+v}{2}, y=\frac{u-v}{2}, \therefore f(u, v)=\left(\frac{u+v}{2}\right) \cdot\left(\frac{u-v}{2}\right)$
Now $\frac{f(x, y)+f(y, x)}{2}$
$=\frac{\left(\frac{x+y}{2} \cdot \frac{x-y}{2}\right)+\left(\frac{y+x}{2} \cdot \frac{y-x}{2}\right)}{2}=0$.
37. (c) : Let the sides of the triangle be $a-d, a, a+d$, then hypotenuse being the greatest side i.e., $a+d$.
So, $(a+d)^{2}=a^{2}+(a-d)^{2}$
$\Rightarrow a^{2}+d^{2}+2 a d=a^{2}+a^{2}-2 a d+d^{2} \Rightarrow a=4 d$
Therefore ratio of the side $=a-d: a: a+d$
$=(4 d-d): 4 d:(4 d+d)=3: 4: 5$.
38. (b) : Let three numbers are $a-d, a, a+d$.

Given $a-d+a+a+d=15 \Rightarrow a=5$
and $(a-d)^{2}+a^{2}+(a+d)^{2}=83$
$\Rightarrow a^{2}+d^{2}-2 a d+a^{2}+a^{2}+d^{2}+2 a d=83$
$\Rightarrow 2\left(a^{2}+d^{2}\right)+a^{2}=83$
Putting $a=5 \Rightarrow 2\left(25+d^{2}\right)+25=83 \Rightarrow d=2$
Thus numbers are $3,5,7$.
39. (b) : Let four arithmetic means are A_{1}, A_{2}, A_{3} and A_{4}. So, 3, $A_{1}, A_{2}, A_{3}, A_{4}, 23$
$\Rightarrow T_{6}=23=a+5 d \Rightarrow d=4$
Thus $A_{1}=3+4=7, A_{2}=7+4=11$,
$A_{3}=11+4=15, A_{4}=15+4=19$
40. (b) : Since $\frac{1}{p+q}, \frac{1}{r+p}$ and $\frac{1}{r+q}$ are in A.P.
$\therefore \quad \frac{1}{r+p}-\frac{1}{p+q}=\frac{1}{q+r}-\frac{1}{r+p}$
$\Rightarrow \frac{p+q-r-p}{(r+p)(p+q)}=\frac{r+p-q-r}{(q+r)(r+p)}$
$\Rightarrow \frac{q-r}{p+q}=\frac{p-q}{q+r}$ or $q^{2}-r^{2}=p^{2}-q^{2}$
Hence, p^{2}, q^{2}, r^{2} are in A.P.
41. (d)
42. (a, c) : Given, a, b, c are in A.P. $\therefore a+c=2 b$

Also, $a+b>c \Rightarrow 3 b>2 c$
And $b+c>a \Rightarrow 2 c>b \Rightarrow \frac{2}{3}<\frac{b}{c}<2$
Similarly for $\frac{b}{a}$, we get $\frac{2}{3}<\frac{b}{a}<2$
43. $(\mathrm{a}, \mathrm{b}, \mathrm{c}): S_{r}=r+r\left(\frac{1}{r+1}\right)+r\left(\frac{1}{r+1}\right)^{2}+\ldots .+\infty$

$$
=\frac{r}{1-\frac{1}{r+1}}=r+1
$$

$\therefore \quad a, b, c$ are correct and d is false.
44. (a, b, c) $: \sum_{r=1}^{n} r^{2}+\sum_{r=1}^{n} r=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}$

$$
=\frac{1}{6} n \cdot(n+1)[2 n+1+3]=\frac{n(n+1)(n+2)}{3}
$$

$a=0, b=1, c=2$
45. ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) : As a_{912} and a_{480} are divisible by 3, none of them is prime, and for a_{91}, we have

$$
\begin{aligned}
& a_{91}=\frac{10^{91}-1}{10-1}=\frac{10^{91}-1}{10^{7}-1} \times \frac{10^{7}-1}{10-1} \\
&=\left(1+10^{7}+\ldots .+10^{84}\right)\left(1+10+\ldots .+10^{6}\right) \\
& \Rightarrow \quad a_{91} \text { is not prime. Hence a,b,c,d are correct }
\end{aligned}
$$

46. (a, b, c, d) 47. (a, c)
47. (b) : $G_{1} G_{2} \ldots G_{n}=(\sqrt{1 \times 1024})^{n}=2^{5 n}$
$\therefore \quad 2^{5 n}=2^{45} \Rightarrow n=9$
48. (b) : $A_{1}+A_{2}+A_{3}+\ldots+A_{m-1}+A_{m}=1025 \times 171$
$\therefore m\left(\frac{-2+1027}{2}\right)=1025 \times 171$
$\therefore \quad m=342$
49. (a) : Since $n=9$,
$\therefore \quad$ Common ratio $(r)=(1024)^{\frac{1}{9+1}}=2$
$\therefore \quad G_{1}=2, r=2$
$G_{1}+G_{2}+\ldots+G_{n}=\frac{2 \cdot\left(2^{9}-1\right)}{2-1}=1024-2=1022$
50. (a) : Common difference of sequence
$A_{1}, A_{2}, \ldots, A_{m}$ is $\frac{1027+2}{342+1}=3$
Common difference of sequence $A_{1}, A_{3}, A_{5}, \ldots, A_{n-1}$ is 6
51. (a) : We have $A_{171}+A_{172}=-2+1027=1025$
$\therefore \quad \frac{2 A_{171}+2 A_{172}}{2}=1025$
Also $G_{5}=1 \times 2^{5}=32$
$\therefore G_{5}^{2}=1024$ i.e. $G_{5}^{2}+1=1025$
$\therefore 2 A_{171}, G_{5}^{2}+1,2 A_{172}$ are in A.P.
52. (c) 54. (b)
53. (c) : Let numbers in set A be $a-D, a, a+d$ and in set B be $b-d, b, b+d$
$3 a=3 b=15 \Rightarrow a=b=5$
Set $A=\{5-D, 5,5+D\}$; Set $B=\{5-d, 5,5+d\}$
Where $D=d+1$
$\frac{p}{q}=\frac{5\left(25-D^{2}\right)}{5\left(25-d^{2}\right)}=\frac{7}{8}$
$25(8-7)=8(d+1)^{2}-7 d$
$\Rightarrow d=-17,1$ but $d>0 \quad \therefore d=1$
So numbers in set A are 3,5,7
Numbers in set B are 4, 5, 6
Now, $p=3 \times 5 \times 7=105$

$$
q=4 \times 5 \times 6=120
$$

Value of $D+d=3$
56. (A) \rightarrow (s), (B) \rightarrow (r), (C) \rightarrow (s), (D) \rightarrow (r)
(A) $b+c=a+d=2 \cdot 10$
$\Rightarrow a+b+c+d=40$
(B) $\left(a r^{2}\right)^{2}=a^{2}+a^{2} r^{2}$
[where $a=2$]
$\therefore \quad r^{4}=1+r^{2}, \quad r^{4}-r^{2}-1=0$
[Let $r^{2}=t$]
$\therefore \quad t=\frac{1 \pm \sqrt{5}}{2} \Rightarrow t=\frac{1+\sqrt{5}}{2}$
$\left(\frac{1-\sqrt{5}}{2}\right.$ rejected $)$ gives negative values
$\therefore \quad r^{2}=\frac{1+\sqrt{5}}{2}$
$\therefore \quad$ Hypotenuse is $2\left(\frac{1+\sqrt{5}}{2}\right)=1+5=a+\sqrt{b}$
On comparing we get
$\therefore \quad a^{2}+b^{2}=1+25=26$
(C) Let a, $a r, a r^{2}$ are in G.P. where $|r|<1$

$$
a+a r+a r^{2}=70
$$

$\therefore \quad 10 a r=4 a+4 a r^{2} \quad$ or $\quad 10 r=4+4 r^{2}$

$$
2 r^{2}-5 r+2=0 \quad \text { or } \quad(2 r-1)(r-2)=0
$$

$\therefore \quad r=1 / 2 \quad(\because \quad|r|<1)$
For $r=1 / 2, a\left(1+r+r^{2}\right)=70$
$\Rightarrow a\left(1+\frac{1}{2}+\frac{1}{4}\right)=70 \Rightarrow a=40$
\therefore Series becomes $40,20,10$ where first term is 40 .
(D) Using cosine rule $a^{2}=9+4+2 \cdot 2 \cdot 3 \cdot=13+6=19$
$\therefore \quad a^{2}=19$
Similarly, $b^{2}=9+4-2 \cdot 2 \cdot 3=7$
$\therefore \quad b^{2}=7$
$\therefore \quad P=2(\sqrt{19}+\sqrt{7})=2(\sqrt{p}+\sqrt{q})$
$\therefore \quad p+q=19+7=26$
57. $(\mathrm{A}) \rightarrow(\mathrm{r}),(\mathrm{B}) \rightarrow(\mathrm{p}),(\mathrm{C}) \rightarrow(\mathrm{s}),(\mathrm{D}) \rightarrow(\mathrm{q})$
(A) $F(n+1)=\frac{2 F(n)+1}{2}=F(n)+\frac{1}{2}$
$\therefore \quad F(1), F(2), F(3), \ldots$ is an A.P. with common difference $1 / 2$
Hence $F(101)=2+(100) \frac{1}{2}=52$
(B) $a_{1}+2 d+a_{1}+4 d+a_{1}+10 d+a_{1}+16 d+a_{1}+18 d$

$$
=5 a_{1}+50 d \Rightarrow a_{1}+10 d=2
$$

Now, $\sum_{i=1}^{21} a_{i}=\frac{21}{2}\left[2 a_{1}+20 d\right]=21\left(a_{1}+10 d\right)=42$
(C) $S=1+5+13+29+\ldots+$

$$
S=\quad 1+5+13+\ldots+
$$

On subtracting, we get $t_{10}=1+4+8+16+\ldots$. up to 10 terms

$$
=1+(4+8+16+\ldots \text { up to } 9 \text { terms })=2045
$$

(D) Sum of all two digit numbers

$$
=\frac{90}{2}(10+99)=(45)(109)
$$

Sum of all two digit numbers divisible by 2

$$
=\frac{45}{2}(10+98)=(45)(54)
$$

Sum of all two digit numbers divisible by 3

$$
=\frac{30}{2}(12+99)=15(111) .
$$

Sum of all two digit numbers is divisible by 6

$$
=\frac{15}{2}(12+96)=15(54)
$$

\therefore Required sum

$$
=45(109)+15(54)-(45)(54)-15(111)=1620
$$

58. $(\mathrm{A}) \rightarrow(\mathrm{q}),(\mathrm{B}) \rightarrow(\mathrm{r}),(\mathrm{C}) \rightarrow(\mathrm{p}),(\mathrm{D}) \rightarrow(\mathrm{s})$
(A) Let the number be $a, b: a+b=12$ and

$$
a b+\frac{6 a b}{a+b}=48 \text { (Given) }
$$

$$
a b+\frac{a b}{2}=48 \quad \therefore \quad a b=32
$$

(B) $S=\frac{5}{1^{2} \cdot 4^{2}}+\frac{11}{4^{2} \cdot 7^{2}}+\frac{17}{7^{2} \cdot 10^{2}}+\ldots$.
$\Rightarrow \quad 3 S=\frac{3 \cdot 5}{1^{2} \cdot 4^{2}}+\frac{3 \cdot 11}{4^{2} \cdot 7^{2}}+\frac{3 \cdot 17}{7^{2} \cdot 10^{2}}+\ldots .$.
$\Rightarrow 3 S=\frac{4^{2}-1^{2}}{1^{2} \cdot 4^{2}}+\frac{7^{2}-4^{2}}{4^{2} \cdot 7^{2}}+\frac{10^{2}-7^{2}}{7^{2} \cdot 10^{2}}+\ldots$.
$\Rightarrow 3 S=1-\frac{1}{4^{2}}+\frac{1}{4^{2}}-\frac{1}{7^{2}}+\frac{1}{7^{2}}-\frac{1}{10^{2}}+\ldots$.
$\Rightarrow \quad 3 S=1 \Rightarrow S=\frac{1}{3}$
(C) H.M of $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ is $\frac{4}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{240}{77}$
(D) G.M. $=\sqrt{(4) \times(9)}=6$
59. (2) : Let the series be $a, a x, a x^{2}, a x^{3}, \ldots$.

Also, $\frac{T_{4}}{T_{2}}=\frac{a x^{3}}{a x}=\frac{1}{16} \Rightarrow x^{2}=\frac{1}{16} \Rightarrow x= \pm \frac{1}{4}$
But since it is a decreasing G.P. $\therefore x=\frac{1}{4}$
Also, $\frac{T_{3}}{T_{2}^{2}}=\frac{a x^{2}}{(a x)^{2}}=\frac{1}{9} \Rightarrow \frac{1}{a}=\frac{1}{9} \Rightarrow a=9$
$S_{\infty}=\frac{a}{1-r}=\frac{9}{1-\frac{1}{4}}=\frac{9 \times 4}{3}=12$
60. (2) : $f(x)$ is increasing.

So its greatest value is $f(3)=27$.
Let the G.P. be $a, a r, a r^{2}, \ldots$ with, $-1<r<1$
$\frac{a}{1-r}=27$ and $a-a r=3$
On solving, we get $r=2 / 3$

CLASS XI Series 6

ACE

Sequences and Series

Important Formulae

Arithemetic Progression (A.P.)

- Common difference $(d)=a_{n+1}-a_{n} \forall n \in N$
- General term, $a_{n}=n^{\text {th }}$ term $=a+(n-1) d$
- $n^{\text {th }}$ term from the end consisting of m terms is
$(m-n+1)^{\text {th }}$ term from the beginning
$\therefore n^{\text {th }}$ term from the end $=a_{m-n+1}$

Sum of n terms of an A.P.

- $S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}[a+l]$
where l is last term
- $a_{n}=S_{n}-S_{n-1}$
- $A=\frac{a+b}{2}$ where A is A.M. of a and b
- If $a_{1}, a_{2}, a_{3}, \ldots . ., a_{n}$ are n numbers then Arithmetic mean $=A=\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}$

Geometric Progression (G.P.)

- Common ratio $=r=\frac{a_{n+1}}{a_{n}} \forall n \in N$
- General term $a_{n}=n^{\text {th }}$ term $=a r^{n}$
- $n^{\text {th }}$ term from the end consisting of m terms is $(m-n+1)^{\text {th }}$ term from the beginning
$\therefore n^{\text {th }}$ term from the end $=a_{m-n+1}=a r^{m} \quad n$ $=l\left(\frac{1}{r}\right)^{n-1}$ where l is last term of G.P.

Sum of n terms of the G.P.

- Sum of finite G.P. $=S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{l r-a}{r-1}(r>1)$

$$
=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a-l r}{1-r}(r<1)
$$

- Sum of an infinite $=S=\frac{a}{1-r} \quad(|r|<1)$

Geometric mean (G.M.)

- If a, x, b are in G.P., then $x=\sqrt{a b}$ is the G.M. of a and b.
- If $a, x_{1}, x_{2}, \ldots . ., x_{n}, b$ are in G.P., then $x_{1}, x_{2}, \ldots .$. , x_{n} are the n geometric means between a and b.
$r=\left(\frac{b}{a}\right)^{1 /(n+1)} \& x_{1}=a r=a\left(\frac{b}{a}\right)^{1 /(n+1)}, x_{2}=a r^{2}$
$=a\left(\frac{b}{a}\right)^{2 /(n+1)}, \ldots \ldots \ldots \ldots \ldots \ldots x_{n}=\frac{b}{r}=b\left(\frac{a}{b}\right)^{1 /(n+1)}$

WORK IT OUT

VERY SHORT ANSWER TYPE

1. Findthe $n^{\text {th }}$ termoftheseries $2 \frac{1}{2}+1 \frac{7}{13}+1 \frac{1}{9}+\frac{20}{23}+\ldots$
2. Find the sum of first six terms of the series:
$\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+$ \qquad
3. If x, y, z are distinct positive numbers, then show that $(x+y)(y+z)(z+x)>8 x y z$
4. If the $9^{\text {th }}$ term of an A.P. vanishes, then find the ratio of its $29^{\text {th }}$ and $19^{\text {th }}$ terms.
5. Show that the product of n terms, where n is odd, of a G.P. will be equal to $n^{\text {th }}$ power of the middle term.

SHORT ANSWER TYPE

6. If a, b, c, d are four distinct positive numbers in A.P. then show that $b c>a d$.
7. If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$ are in A.P. whose common difference is d, then show that $\sin d\left[\sec \alpha_{1} \sec \alpha_{2}+\right.$ $\left.\sec \alpha_{2} \sec \alpha_{3}+\ldots+\sec \alpha_{n-1} \sec \alpha_{n}\right]=\tan \alpha_{n}-\tan \alpha_{1}$.
8. If x, y, z are positive then find the minimum value of $x^{\log y-\log z}+y^{\log z-\log x}+z^{\log x-\log y}$.
9. Find the sum : $\sum_{r=1}^{n} \frac{1}{(a r+b)(a r+a+b)}$.
10. The vibrations of system are damped so that the amplitudes of the successive deflections are 12,8 , $16 / 3, \ldots$. Find the amplitude of the $6^{\text {th }}$ deflection and also the total deflection before the system comes to rest.

LONG ANSWER TYPE - I

11. If $a_{1}, a_{2}, a_{3}, \ldots . ., a_{n}$ are in A.P. and
$\left(a_{1}+a_{n}\right)\left[\frac{1}{a_{1} a_{n}}+\frac{1}{a_{2} a_{n-1}}+\frac{1}{a_{3} a_{n-2}}+\ldots+\frac{1}{a_{n} a_{1}}\right]=k \sum_{r=1}^{n} \frac{1}{a_{r}}$
and a be the one A.M. and x, y be the two G.M.s between b and c, then show that $x^{3}+y^{3}=k a b c$.
12. If $p^{\text {th }}$ and $q^{\text {th }}$ terms of G.P. are q and p respectively, show that the $(p+q)^{\text {th }}$ term is $\left(q^{p} / p^{q}\right)^{1 /(p-q)}$.
13. Find the sum upto n terms of the series: $\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots \ldots$.
14. One side of an equilateral triangle is 24 cm . The midpoints of its sides are joined to form still another triangle. This process continues, indefinitely. Find the sum of the perimeters of all the triangles.
15. If a, b, c are in A.P. and x, y, z are in G.P., then show that $x^{b-c} \cdot y^{c-a} \cdot z^{a-b}=1$.

LONG ANSWER TYPE - II

16. Find the sum to n terms of the series:

$$
3+15+35+63+\ldots . . .
$$

17. If a, b, c are in G.P. and $\log _{c} a, \log _{b} c$ and $\log _{a} b$ are in A.P. show that the common difference of A.P. is 3/2.
18. If in an A.P. the sum of m terms is equal to n and the sum of n terms is equal to m, then prove that the sum of $(m+n)$ terms is $-(m+n)$. Also, find the sum of first $(m-n)$ terms $(m>n)$.
19. Suppose x and y are two real numbers such that the $r^{\text {th }}$ mean between x and $2 y$ is equal to the $r^{\text {th }}$ mean between $2 x$ and y when n arithmetic means are inserted bwteen them in both the cases. Show that $\frac{n+1}{r}-\frac{y}{x}=1$.
20. The ratio of the sum of n terms of two A.P.'s is $(7 n+1):(4 n+27)$. Find the ratio of their $n^{\text {th }}$ terms.

SOLUTIONS

1. Reciprocals of the given terms of the series are:

$$
\begin{aligned}
& \frac{2}{5}, \frac{13}{20}, \frac{9}{10}, \frac{23}{20}, \ldots \text { or } \frac{8}{20}, \frac{13}{20}, \frac{18}{20}, \frac{23}{20}, \ldots \\
\therefore & n^{\text {th }} \operatorname{term}\left(a_{n}\right)=\frac{8+(n-1) 5}{20}=\frac{5 n+3}{20}
\end{aligned}
$$

Hence, $n^{\text {th }}$ term of the required series $=\frac{20}{5 n+3}$
2. Let T_{r} be the r th term of the given series. Then,

$$
T_{r}=\frac{1}{r(r+1)}, r=1,2, \ldots, n
$$

$\Rightarrow T_{r}=\frac{1}{r}-\frac{1}{r+1}, r=1,2, \ldots, n$
\therefore Required term $=\sum_{r=1}^{6} T_{6}=\sum_{r=1}^{6}\left(\frac{1}{r}-\frac{1}{r+1}\right)$
$=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{6}-\frac{1}{7}\right)$
$=1-\frac{1}{7}=\frac{6}{7}$
3. Using A.M. > G.M., we obtain

$$
\begin{aligned}
& \frac{x+y}{2}>\sqrt{x y}, \frac{y+z}{2}>\sqrt{y z} \text { and } \frac{z+x}{2}>\sqrt{z x} \\
\Rightarrow & x+y>2 \sqrt{x y}, y+z>2 \sqrt{y z} \text { and } z+x>2 \sqrt{z x}
\end{aligned}
$$

$\Rightarrow(x+y)(y+z)(z+x)>2 \sqrt{x y} \times 2 \sqrt{y z} \times 2 \sqrt{z x}$
$\Rightarrow(x+y)(y+z)(z+x)>8 x y z$.
4. $T_{9}=0 \Rightarrow a+8 d=0 \Rightarrow a=-8 d$
$\therefore \quad \frac{T_{29}}{T_{19}}=\frac{a+28 d}{a+18 d}=\frac{-8 d+28 d}{-8 d+18 d}=\frac{20 d}{10 d}=\frac{2}{1}$
5. Let the G.P. be $a, a r, a r^{2}, a r^{3} \ldots, a r^{n-1}$ Here, the number of terms is odd.
\therefore The middle term $=a r^{((n+1) / 2)-1}=a r^{(n-1) / 2}$.
Then, $a \cdot a r \cdot a r^{2} \cdot a r^{3} \ldots . . a r^{n-1}=a^{n} r^{1+2+3+\ldots+(n-1)}$
$=a^{n} r^{(n-1) n / 2}=\left[a r^{(n-1) / 2}\right]^{n}=(\text { the middle term })^{n}$.
6. Given a, b, c, d are in A.P.
$\Rightarrow b$ is the A.M. of a and c
And, G.M. of a and c is $\sqrt{a c}$.
\because A.M. of a and $c>$ G.M. of a and c
$\therefore b>\sqrt{a c} \Rightarrow b^{2}>a c$
Similarly, c is the A.M. of b and d
$\therefore \quad c>\sqrt{b d} \Rightarrow c^{2}>b d$
From (i) and (ii), we get
$b^{2} c^{2}>(a c)(b d) \Rightarrow b c>a d$.
7. We have, $\sin d\left(\sec \alpha_{1} \sec \alpha_{2}\right)=\frac{\sin \left(\alpha_{2}-\alpha_{1}\right)}{\cos \alpha_{1} \cdot \cos \alpha_{2}}$

$$
=\frac{\sin \alpha_{2} \cos \alpha_{1}}{\cos \alpha_{1} \cdot \cos \alpha_{2}}-\frac{\cos \alpha_{2} \sin \alpha_{1}}{\cos \alpha_{1} \cdot \cos \alpha_{2}}=\tan \alpha_{2}-\tan \alpha_{1}
$$

Similarly, $\sin d \sec \alpha_{2} \sec \alpha_{3}=\tan \alpha_{3}-\tan \alpha_{2}$
$\sin d \sec \alpha_{n-1} \sec \alpha_{n}=\tan \alpha_{n}-\tan \alpha_{n-1}$
On adding, we get
$\sin d\left[\sec \alpha_{1} \sec \alpha_{2}+\sec \alpha_{2} \sec \alpha_{3}+\ldots+\sec \alpha_{n-1} \sec \alpha_{n}\right]$ $=\tan \alpha_{n}-\tan \alpha_{1}$
8. Since A.M. \geq G.M.
$\Rightarrow \frac{x^{\log y-\log z}+y^{\log z-\log x}+z^{\log x-\log y}}{3}$
$\geq \sqrt[3]{x^{\log y-\log z} \cdot y^{\log z-\log x} \cdot z^{\log x-\log y}}=1$
because $\log \left(x^{\log y-\log z} \cdot y^{\log z-\log x} \cdot z^{\log x-\log y}\right)$
$=(\log y-\log z) \log x+(\log z-\log x) \log y+$ $(\log x-\log y) \log z=0$
$\therefore \quad x^{\log y-\log z} \cdot y^{\log z-\log x} \cdot z^{\log x-\log y}=e^{0}=1$
Hence, minimum value of given expression is 1 .
9. We have, $\sum_{r=1}^{n} \frac{1}{(a r+b)(a r+a+b)}$
$=\sum_{r=1}^{n} \frac{1}{a}\left(\frac{1}{(a r+b)}-\frac{1}{(a r+a+b)}\right)$
$=\frac{1}{a}\left[\left(\frac{1}{a+b}-\frac{1}{2 a+b}\right)+\left(\frac{1}{2 a+b}-\frac{1}{3 a+b}\right)+\ldots\right.$
$\left.\ldots+\left(\frac{1}{n a+b}-\frac{1}{(n+1) a+b}\right)\right]$
$=\frac{1}{a}\left\{\frac{1}{a+b}-\frac{1}{(n+1) a+b}\right\}=\frac{n}{(a+b)\{(n+1) a+b\}}$.
10. The amplitudes of the successive deflections are 12 , $8,16 / 3, \ldots$ which form the G.P.
Here, $a=12, r=\frac{8}{12}=\frac{2}{3}$
\therefore Amplitude of the $6^{\text {th }}$ deflection $=a r^{6-1}=a r^{5}$
$=12 \times\left(\frac{2}{3}\right)^{5}=12 \times \frac{32}{243}=\frac{128}{81}$
Total deflection before the system comes to rest $=$ Sum to infinite terms of the G.P. $=\frac{a}{1-r}=\frac{12}{1-\frac{2}{3}}=36$
11. Given, $\left(a_{1}+a_{n}\right)\left[\frac{1}{a_{1} a_{n}}+\frac{1}{a_{2} a_{n-1}}+\frac{1}{a_{3} a_{n-2}}+\ldots+\frac{1}{a_{n} a_{1}}\right]$
$=\frac{a_{1}+a_{n}}{a_{1} a_{n}}+\frac{a_{2}+a_{n-1}}{a_{2} a_{n-1}}+\frac{a_{3}+a_{n-2}}{a_{3} a_{n-2}}+\ldots+\frac{a_{n}+a_{1}}{a_{n} a_{1}}$
$=\left(\frac{1}{a_{n}}+\frac{1}{a_{1}}\right)+\left(\frac{1}{a_{n-1}}+\frac{1}{a_{2}}\right)+\left(\frac{1}{a_{n-2}}+\frac{1}{a_{3}}\right)+\ldots+\left(\frac{1}{a_{1}}+\frac{1}{a_{n}}\right)$
$=2\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)=2 \sum_{r=1}^{n} \frac{1}{a_{r}}$
$\therefore k=2$
Now, $x^{3}+y^{3}=b^{3} r^{3}\left(1+r^{3}\right)=b^{3} \cdot \frac{c}{b}\left(1+\frac{c}{b}\right)$

$$
=b c(b+c)=b c(2 a)=2 a b c=k a b c
$$

12. Let a be the first term and r be the common ratio of G.P. then, $t_{p}=a r^{p-1}=q \ldots$ (i) and $t_{q}=a r^{q-1}=p \ldots$ (ii)
Dividing (i) by (ii), we get $\frac{a r^{p-1}}{a r^{q-1}}=\frac{q}{p}$
$\Rightarrow r^{p-q}=\frac{q}{p} \Rightarrow r=\left(\frac{q}{p}\right)^{1 /(p-q)}$
Now, $t_{p+q}=a r^{p+q-1}=a r^{p-1} r^{q}$

$$
\begin{gathered}
=q\left(\frac{q}{p}\right)^{q /(p-q)}=q \cdot \frac{q^{q /(p-q)}}{p^{q /(p-q)}}=\frac{q^{1+q /(p-q)}}{p^{q /(p-q)}} \\
=\frac{q^{p /(p-q)}}{p^{q /(p-q)}}=\left(\frac{q^{p}}{p^{q}}\right)^{1 /(p-q)}
\end{gathered}
$$

13. Let T_{r} be the $r^{\text {th }}$ term of the given series. Then,

$$
\begin{aligned}
& T_{r}=\frac{r}{1+r^{2}+r^{4}}, r=1,2,3, \ldots, n \\
& \Rightarrow T_{r}=\frac{r}{\left(r^{2}+r+1\right)\left(r^{2}-r+1\right)} \\
&=\frac{1}{2}\left\{\frac{2 r}{\left(r^{2}+r+1\right)\left(r^{2}-r+1\right)}\right\} \\
& \Rightarrow T_{r}=\frac{1}{2}\left\{\frac{1}{\left(r^{2}-r+1\right)}-\frac{1}{\left(r^{2}+r+1\right)}\right\}, r=1,2, \ldots, n \\
& \therefore \quad S_{n}=\sum_{r=1}^{n} T_{r}=\frac{1}{2}\left\{\sum_{r=1}^{n}\left(\frac{1}{r^{2}-r+1}-\frac{1}{r^{2}+r+1}\right)\right\} \\
&= \frac{1}{2}\left\{\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{13}\right)\right. \\
&= \frac{1}{2}\left\{1-\frac{1}{n^{2}+n+1}\right\}=\frac{n^{2}+n}{2\left(n^{2}+n+1\right)} .
\end{aligned}
$$

14. Perimeter of the 1st equilateral $\triangle A B C=3 \times$ side

$$
=3 \times 24=72 \mathrm{~cm} .
$$

Let D, E, F are the mid-points of the sides $B C, C A$, $A B$ respectively.
$\therefore \quad D E=\frac{1}{2} A B=\frac{1}{2} \times 24=12 \mathrm{~cm}$
Similarly, $E F=D F=12 \mathrm{~cm}$
\therefore Perimeter of $\triangle D E F=3 \times 12=$
36 cm
Similarly we get, perimeter of
$\Delta G H I=3 \times 6=18 \mathrm{~cm}$.
Sum of perimeters of these triangles

which are infinite in number $=72$
$+36+18+\ldots . . \infty$. (which forms the G.P.) $=\frac{72}{1-\frac{1}{2}}$
$=144 \mathrm{~cm}$
15. If a, b, c are in A.P. $\Rightarrow 2 b=a+\mathrm{c}$
x, y, z are in G.P. $\Rightarrow y^{2}=x z$
$\therefore \quad x^{b-c} y^{c-a} z^{a-b}=x^{b-c}(\sqrt{x z})^{c-a} z^{a-b}$
[Using(ii)]
$=x^{b-c} x^{\frac{c-a}{2}} z^{\frac{c-a}{2}} z^{a-b}=x^{b-c+\frac{c-a}{2}} z^{a-b+\frac{c-a}{2}}$
$=x^{\frac{2 b-(a+c)}{2}} z^{\frac{(c+a)-2 b}{2}}=x^{0} z^{0}=1$
16. The difference between the successive terms are $15-3=12,35-15=20,63-35=28, \ldots$. Clearly, these differences are in A.P.
Let T_{n} be the $n^{\text {th }}$ term and S_{n} denote the sum to n terms of the given series. Then,
$S_{n}=3+15+35+63+\ldots+T_{n-1}+T_{n}$
$S_{n}=3+15+35+\ldots \ldots .+T_{n-1}+T_{n}$
Subtracting (ii) from (i), we get

$$
\left.\begin{array}{l}
0=3+\left\{12+20+28+\ldots+\left(T_{n}-T_{n-1}\right)\right\}-T_{n} \\
\Rightarrow \quad T_{n}=3+\frac{(n-1)}{2}\{2 \times 12+(n-1-1) \times 8\} \\
\quad=3+(n-1)(12+4 n-8) \\
\Rightarrow T_{n}=3+(n-1)(4 n+4)=4 n^{2}-1 \\
\therefore S_{n}=\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n}\left(4 k^{2}-1\right) \\
\Rightarrow S_{n}
\end{array}=4 \sum_{k=1}^{n} k^{2}-\sum_{k=1}^{n} 1=4\left\{\frac{n(n+1)(2 n+1)}{6}\right\}-n\right\}
$$

17. Let $x=\log _{c} a, y=\log _{b} c, z=\log _{a} b \therefore x y z=1$

Given x, y, z are in A.P. $\therefore 2 y=x+z$
Given a, b, c are in G.P.
$\therefore \quad b^{2}=a c \Rightarrow 2 \log _{b} b=\log _{b} a+\log _{b} c \Rightarrow 2=\frac{1}{z}+y$
From (ii) and (iii), $2\left(2-\frac{1}{z}\right)=x+z$
$\Rightarrow x=4-\frac{2}{z}-z=\frac{4 z-2-z^{2}}{z}$
From (i), $\frac{4 z-2-z^{2}}{z} \cdot\left(2-\frac{1}{z}\right) \cdot z=1$
$\Rightarrow\left(4 z-2-z^{2}\right)(2 z-1)=z$
$\Rightarrow 8 z^{2}-4 z-2 z^{3}-4 z+2+z^{2}=z$
$\Rightarrow-2 z^{3}+9 z^{2}-9 z+2=0$
$[\because z-1 \neq 0]$
$\Rightarrow 2 z^{2}-7 z+2=0$
$\therefore \quad$ Common difference of A.P. $=z-y=z-2+\frac{1}{z}$
$=\frac{z^{2}-2 z+1}{z}=\frac{2 z^{2}-4 z+2}{2 z}=\frac{3 z}{2 z}=\frac{3}{2}$.

MPP-6 CLASS XI
 ANSWER KEY

1. (c)
2. (d)
3. (c)
4. (c)
5. (a)
6. (b)
7. (a, b)
8. (a, b, c)
9. (b, c)
10. (b, d)
11. (c)
12. (b, d)
13. (d)
14. (b)
15. (a)
16. (a)
17. (9)
18. (4)
19. (5)
20. (4)
21. Let a be the first term and d be the common difference of the given A.P. Then,
$S_{m}=n \Rightarrow \frac{m}{2}\{2 a+(m-1) d\}=n$
$\Rightarrow 2 a m+m(m-1) d=2 n$
Also, $S_{n}=m \Rightarrow \frac{n}{2}\{2 a+(n-1) d\}=m$
$\Rightarrow 2 a n+n(n-1) d=2 m$
Subtracting (ii) from (i), we get
$2 a(m-n)+\{m(m-1)-n(n-1)\} d=2 n-2 m$
$\Rightarrow 2 a(m-n)+\left\{\left(m^{2}-n^{2}\right)-(m-n)\right\} d=-2(m-n)$
$\Rightarrow 2 a+(m+n-1) d=-2$
Now, $\quad S_{m+n}=\frac{m+n}{2}\{2 a+(m+n-1) d\}$
$\Rightarrow S_{m+n}=\frac{(m+n)}{2}(-2) \quad \therefore S_{m+n}=-(m+n)$
From (iii), we obtain
$2 a=-2-(m+n-1) d$
Substituting this value of $2 a$ in (i), we obtain
$-2 m-m(m+n-1) d+m(m-1) d=2 n$
$\Rightarrow d=-2\left(\frac{m+n}{m n}\right)$
Putting $d=-2\left(\frac{m+n}{m n}\right)$ in (iv), we obtain
$2 a=-2+\frac{2}{m n}(m+n-1)(m+n)$
Now, $S_{m-n}=\frac{m-n}{2}\{2 a+(m-n-1) d\}$
$\Rightarrow S_{m-n}=\frac{m-n}{2}\left\{-2+\frac{2}{m n}(m+n-1)(m+n)-\frac{2}{m n}\right.$
$\left.\Rightarrow S_{m-n}=\frac{m-n}{2}\left\{-2+\frac{4 n}{m n}(m+n)\right\}=\frac{1}{m}(m-n-1)(m+n)\right\}$
22. Let $A_{1}, A_{2}, \ldots, A_{n}$ be n arithmetic means between x and $2 y$. Then, $x, A_{1}, A_{2}, \ldots, A_{n}, 2 y$ are in A.P. with common difference d_{1} given by $d_{1}=\frac{2 y-x}{n+1}$.
$\therefore \quad r^{\text {th }}$ mean $=A_{r}=x+r d_{1}=x+r\left(\frac{2 y-x}{n+1}\right)$
Let $A_{1}^{\prime}, \mathrm{A}_{2}^{\prime}, \ldots, A^{\prime}{ }_{n}$ be n arithmetic means between $2 x$ and y. Then, $2 x, A_{1}^{\prime}, \mathrm{A}_{2}^{\prime}, \ldots, A_{n}^{\prime}, y$ are in A.P. with common difference d_{2} given by $d_{2}=\frac{y-2 x}{n+1}$.
$\therefore \quad r^{\text {th }}$ mean $=A_{r}=2 x+r d_{2}=2 x+r\left(\frac{y-2 x}{n+1}\right)$

It is given that: $A_{r}=A_{r}^{\prime}$
$\Rightarrow x+r\left(\frac{2 y-x}{n+1}\right)=2 x+r\left(\frac{y-2 x}{n+1}\right)$
$\Rightarrow(n+1) x+r(2 y-x)=(n+1) 2 x+r(y-2 x)$
$\Rightarrow(n+1) x-r y=r x$
$\Rightarrow \frac{n+1}{r}-\frac{y}{x}=1$
20. Let a_{1}, a_{2} be the first terms and d_{1}, d_{2} the common differences of the two given A.P.'s respectively. Then, the sums S_{n} and $S^{\prime}{ }_{n}$ of their n terms are given by

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left\{2 a_{1}+(n-1) d_{1}\right\} \text { and } S_{n}^{\prime}=\frac{n}{2}\left\{2 a_{2}+(n-1) d_{2}\right\} \\
& \therefore \quad \frac{S_{n}}{S_{n}^{\prime}}=\frac{\frac{n}{2}\left\{2 a_{1}+(n-1) d_{1}\right\}}{\frac{n}{2}\left\{2 a_{2}+(n-1) d_{2}\right\}}=\frac{\left\{2 a_{1}+(n-1) d_{1}\right\}}{\left\{2 a_{2}+(n-1) d_{2}\right\}}
\end{aligned}
$$

It is given that $\frac{S_{n}}{S_{n}{ }^{\prime}}=\frac{7 n+1}{4 n+27}$
$\Rightarrow \frac{2 a_{1}+(n-1) d_{2}}{2 a_{2}+(n-1) d_{2}}=\frac{7 n+1}{4 n+27}$
$\Rightarrow \frac{a_{1}+\frac{(n-1)}{2} d_{2}}{a_{2}+\frac{(n-1)}{2} d_{2}}=\frac{7 n+1}{4 n+27}$
Since, the ratio to $m^{\text {th }}$ terms of two A.P.'s is, $\frac{a_{1}+(m-1) d_{2}}{a_{2}+(m-1) d_{2}}$
So, replacing $\frac{n-1}{2}$ by $(m-1)$ on the L.H.S of (i) we get
i.e., $\frac{a_{1}+(m-1) d_{1}}{a_{2}+(m-1) d_{2}}=\frac{7(2 m-1)+1}{4(2 m-1)+27}=\frac{14 m-6}{8 m+23}$.

Your favourite MTG Books/Magazines available in

UTTARAKHAND at

- National Book House - Dehradun Ph: 0135-2659430; Mob: 9897830283
- Army Book Depot - Dehradun Ph: 0135-2756683; Mob: 9897927902
- Om Vidya Educational Book - Dehradun Mob: 9897833882
- Career Zone - Haldwani Ph: 05946-262051; Mob: 9412128075, 94123833167
- World Vision Publication - Haldwani Mob: 9927932200, 9027240169
- Diamond Stationers - Haridwar Ph: 0133-4252043; Mob: 9358398035, 9359763348
- Consul Book Depot - Nainital Ph: 0592-235164; Mob: 9412084105
- Indra Book Emporium - Roorkee Ph: 0133-276105; Mob: 8126293314
- Cambridge Book Depot - Roorkee Ph: 272341, 272345; Mob: 9719190955

Visit "MTG IN YOUR CITY" on www.mtg.in to locate nearest book seller OR write to info@mtg.in OR call

0124-6601200 for further assistance.

MPP-6 Моптнly
 Practice Problems

This specially designed column enables students to self analyse their extent of understanding of specified chapters. Give yourself four marks for correct answer and deduct one mark for wrong answer. Self check table given at the end will help you to check your readiness.

Sequences and Series

Total Marks : 80
Time Taken : 60 Min.

Only One Option Correct Type

1. If a, b, c are positive reals, then least value of $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ is
(a) 1
(b) 6
(c) 9
(d) none of these
2. Two A.M's A_{1} and A_{2}; two G.M's G_{1} and G_{2} and two H.M's H_{1} and H_{2} are inserted between any two numbers, then $H_{1}^{-1}+H_{2}^{-1}$ equals
(a) $A_{1}^{-1}+A_{2}^{-1}$
(b) $G_{1}^{-1}+G_{2}^{-1}$
(c) $\frac{G_{1} G_{2}}{\left(A_{1}+A_{2}\right)}$
(d) $\frac{\left(A_{1}+A_{2}\right)}{G_{1} G_{2}}$
3. If a, b, c are digits, then the rational number represented by 0 . cababab is
(a) $\frac{c a b}{990}$
(b) $\frac{(99 c+b a)}{990}$
(c) $\frac{(99 c+10 a+b)}{99}$
(d) $\frac{(99 c+10 a+b)}{990}$
4. If H is the harmonic mean between a and b, then $\frac{H+a}{H-a}+\frac{H+b}{H-b}$ is equal to
(a) $\frac{1}{2}$
(b) $-\frac{1}{2}$
(c) 2
(d) -2
5. If the arithmetic progression whose common difference is non zero, the sum of first $3 n$ terms is equal to the sum of the next n terms. Then the ratio of the sum of the first $2 n$ terms to the next $2 n$ terms is
(a) $\frac{1}{5}$
(b) $\frac{2}{3}$
(c) $\frac{3}{4}$
(d) none of these.
6. If $3+5 r+7 r^{2}+\ldots$. to ∞ to $\frac{44}{9}$, then r is equal to
(a) $\frac{17}{11}$
(b) $\frac{1}{4}$
(c) $\frac{11}{17}$
(d) 4

One or More Than One Option(s) Correct Type

7. If $\log _{x} a, a^{x / 2}$ and $\log _{b} x$ are in G.P. then x is equal to
(a) $\log _{a}\left(\log _{b} a\right)$
(b) $\log _{a}\left(\log _{e} a\right)-\log _{a}\left(\log _{e} b\right)$
(c) $-\log _{a}\left(\log _{a} b\right)$
(d) $\log _{a}\left(\log _{e} b\right)-\log _{a}\left(\log _{e} a\right)$
8. The series of natural numbers is divided into groups $1 ; 2,3,4 ; 5,6,7,8,9 ; \ldots$ and so on. Then the sum of the numbers in the $n^{\text {th }}$ group is
(a) $(2 n-1)\left(n^{2}-n+1\right)$
(b) $2 n^{3}-3 n^{2}+3 n-1$
(c) $n^{3}+(n-1)^{3}$
(d) $n^{3}+(n+1)^{3}$
9. Let a, b, c, d, e be five numbers such that a, b, c are in A.P., b, c, d are in G.P. and c, d, e are in H.P.
If $a=2$ and $e=18$, then $b=$
(a) 2
(b) -2
(c) 4
(d) -4
10. There are two numbers a and b whose product is 192 and the quotient of A.M. by H.M. of their greatest common divisor and least common multiple is $\frac{169}{48}$. The smaller of a and b is
(a) 2
(b) 4
(c) 6
(d) 12
11. Given that $0<x<\frac{\pi}{4}$ and $\frac{\pi}{4}<y<\frac{\pi}{2}$
and $\sum_{k=0}^{\infty}(-1)^{k} \tan ^{2 k} x=a, \sum_{k=0}^{\infty}(-1)^{k} \cot ^{2 k} y=b$, then $\sum_{k=0}^{\infty}(\tan)^{2 k} x \cot ^{2 k} y$ is
(a) $\frac{1}{a}+\frac{1}{b}-\frac{1}{a b}$
(b) $a+b-a b$
(c) $\frac{1}{\frac{1}{a}+\frac{1}{b}-\frac{1}{a b}}$
(d) $\frac{a b}{a+b-1}$
12. The first three terms of a progression are $3,-1,-1$. The next term is
(a) 2
(b) 3
(c) $\frac{-5}{27}$
(d) $-\frac{5}{9}$
13. Suppose a, b, c are in A.P. and a^{2}, b^{2}, c^{2} are in G.P. If $a<b<c$ and $a+b+c=\frac{3}{2}$, then the value of a is
(a) $\frac{1}{2 \sqrt{2}}$
(b) $\frac{1}{2 \sqrt{3}}$
(c) $\frac{1}{2}-\frac{1}{\sqrt{3}}$
(d) $\frac{1}{2}-\frac{1}{\sqrt{2}}$

Comprehension Type

Let $\left\{a_{n}\right\}$ be a sequence such that $\sum_{r=1}^{n} a_{r}=n^{2}$.
14. $\frac{1^{3}}{a_{1}}+\frac{1^{3}+2^{3}}{a_{1}+a_{2}}+\frac{1^{3}+2^{3}+3^{3}}{a_{1}+a_{2}+a_{3}}+\ldots$ upto 16 terms is
(a) 346
(b) 446
(c) 546
(d) 464
15. $\frac{a_{1}}{\lfloor }+\frac{a_{1}+a_{2}}{\lfloor 2}+\frac{a_{1}+a_{2}+a_{3}}{\lfloor 3}+\ldots$ upto ∞ is
(a) $2 e$
(b) $2 e-1$
(c) e^{2}
(d) $e-1$

Matrix Match Type

16. Match the following :

Column I		Column II	
P.Three numbers a, b, c between 2 and 18 such that $a+b+c=25 ; 2, a$, b are consecutive terms of an A.P. ; $b, c, 18$ are consecutive terms of an G.P. If $G=\operatorname{Max}\{a, b, c\}$ and $L=\operatorname{Min}\{a, b, c\}$ then	1.	$\frac{1}{2}\left(e+\frac{1}{e}\right)$	

Integer Answer Type

17. If $x_{1}, x_{2}, x_{3}, \ldots ., x_{2008}$ are in H.P. and
$\sum_{i=1}^{2007} x_{i} x_{i+1}=\lambda x_{1} x_{2008}$, then sum of the digits of λ is
18. If a, b, c are in H.P. and if $\left(\frac{a+b}{2 a-b}\right)+\left(\frac{c+b}{2 c-b}\right)>\sqrt{\lambda \sqrt{\lambda \sqrt{\lambda \ldots \infty}}}$, then the value of λ must be
19. The number of zeroes in the end of the product of $5^{6} \times 6^{7} \times 7^{8} \times 8^{9} \times \ldots . \times 50^{51}$ must be 57λ where λ is
20. Value of $S=1+\frac{2}{2}+\frac{3}{4}+\frac{4}{8}+\frac{5}{16}+\ldots$.to ∞ is

Keys are published in this issue. Search now! ©

SELFCHECK
 No. of questions attempted
 $\ldots .$.
 No. of questions correct
 Check your score! If your score is
 > 90\% EXCELLENT WORK! You are well prepared to take the challenge of final exam.
 Marks scored in percentage

This column is aimed at Class XII students so that they can prepare for competitive exams such as JEE Main/Advanced, etc. and be also in command of what is being covered in their school as part of NCERT syllabus. The problems here are a happy blend of the straight and the twisted, the simple and the difficult and the easy and the challenging.
*ALOK KUMAR, B.Tech, IIT Kanpur

LIMIT OF A FUNCTION

Let $y=f(x)$ be a function of x. If at $x=a f(x)$ takes indeterminate form, then we consider the values of the function which are very near to ' a '. If these values tend to a definite unique number as x tends to ' a ', then the unique number so obtained is called the limit of $f(x)$ at $x=a$ and we write it as $\lim _{x \rightarrow a} f(x)$.

- Left hand and right hand limit : Consider the values of the functions at the points which are very near to a on the left of a. If these values tend to a definite unique number as x tends to a, then the unique number so obtained is called left-hand limit of $f(x)$ at $x=a$ and symbolically we write it as $\lim _{x \rightarrow a^{-}} f(x)=\lim _{h \rightarrow 0} f(a-h)$.
Similarly we can define right-hand limit of $f(x)$ at $x=a$ which is expressed as

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{h \rightarrow 0} f(a+h)
$$

- Existence of limit : $\lim _{x \rightarrow a} f(x)$ exists when, both
$\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist and
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$ i.e. L.H.L. $=$ R.H.L.

FUNDAMENTAL THEOREMS ON LIMITS

Let $\lim _{x \rightarrow 0} f(x)=l$ and $\lim _{x \rightarrow 0} g(x)=m$ (l and m are real numbers) then

- $\lim _{x \rightarrow a}(f(x) \pm g(x))=l \pm m$ - $\lim _{x \rightarrow a}(f(x) \cdot g(x))=l \cdot m$
- $\quad \lim _{x \rightarrow a} k f(x)=k \cdot l$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{l}{m}, m \neq 0$
- If $\lim _{x \rightarrow a} f(x)=+\infty$ or $-\infty$, then $\lim _{x \rightarrow a} \frac{1}{f(x)}=0$
- $\lim _{x \rightarrow a} \log \{f(x)\}=\log \left\{\lim _{x \rightarrow a} f(x)\right\}$
- If $f(x) \leq g(x)$ for all x, then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a}[f(x)]^{g(x)}=\left\{\lim _{x \rightarrow a} f(x)\right\}^{\lim _{x \rightarrow a} g(x)}$
- If p and q are integers, then $\lim _{x \rightarrow a}(f(x))^{p / q}=l^{p / q}$, provided $(l)^{p / q}$ is a real number.
- $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(m)$ provided ' f ' is continuous at $g(x)=m$.
Trigonometric Limits
- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1=\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}$
- $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1=\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}$ - $\lim _{x \rightarrow 0} \cos x=1$
- $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=\lim _{x \rightarrow \infty} \frac{\cos x}{x}=0 \quad$ - $\lim _{x \rightarrow \infty} \frac{\sin (1 / x)}{(1 / x)}=1$

Logarithmic Limits

- $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1 \quad$ - $\lim _{x \rightarrow e} \log _{e} x=1$
- $\lim _{x \rightarrow 0} \frac{\log (1-x)}{x}=-1$
- $\lim _{x \rightarrow 0} \frac{\log _{a}(1+x)}{x}=\log _{a} e, a>0, \neq 1$

Exponential Limits

- $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
- $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$
- $\lim _{x \rightarrow 0} \frac{e^{\lambda x}-1}{x}=\lambda \quad(\lambda \neq 0)$

Based on the Form 1^{∞}

- If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$, then
$\lim _{x \rightarrow a}\{1+f(x)\}^{1 / g(x)}=e^{\lim _{x \rightarrow a} \frac{f(x)}{g(x)}}$ or when
$\lim _{x \rightarrow a} f(x)=1$ and $\lim _{x \rightarrow a} g(x)=\infty$, then
$\lim _{x \rightarrow a}\{f(x)\}^{g(x)}=\lim _{x \rightarrow a}[1+f(x)-1]^{g(x)}$

$$
=e^{\lim _{x \rightarrow a}(f(x)-1) g(x)}
$$

- $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e \quad$ - $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$
- $\lim _{x \rightarrow 0}(1+\lambda x)^{1 / x}=e^{\lambda} \quad \bullet \lim _{x \rightarrow \infty}\left(1+\frac{\lambda}{x}\right)^{x}=e^{\lambda}$
- $\quad \lim _{x \rightarrow \infty} a^{x}=\left\{\begin{array}{l}\infty, \text { if } a>1 \\ 0, \text { if } a<1\end{array}\right.$

L-Hospital's Rule

If $f(x)$ and $g(x)$ be two functions of x such that

- $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$
- Both are continuous and differentiable at $x=a$.
- $f^{\prime}(x)$ and $g^{\prime}(x)$ are continuous at the point $x=a$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(a) \neq 0}$ provided that \quad pren ${ }^{\prime}(x)$ $g^{\prime}(a) \neq 0$.
The above rule is also applicable if $\lim _{x \rightarrow a} f(x)=\infty$
and $\lim g(x)=\infty$. and $\lim _{x \rightarrow a} g(x)=\infty$.

CONTINUITY OF A FUNCTION AT A POINT

A function $f(x)$ is said to be continuous at a point $x=a$ of its domain if and only if $\lim _{x \rightarrow a} f(x)$ exists and is equal to $f(a)$ i.e., if $\lim _{x \rightarrow a^{-}} f(x)=f(a)=\lim _{x \rightarrow a+} f(x)$

- Cauchy's definition of continuity : A function f is said to be continuous at a point a of its domain D if for every $\in>0$ there exists $\delta>0$ (dependent on \in) such that $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon$.

PROPERTIES OF CONTINUOUS FUNCTION

Let $f(x)$ and $g(x)$ be two continuous functions at $x=a$. Then

- A function $f(x)$ is said to be everywhere continuous if it is continuous on the entire real line R i.e. $(-\infty, \infty)$. e.g., polynomial function, $e^{x}, \sin x, \cos x$, constant, $x^{n},|x-a|$ etc.
- If $g(x)$ is continuous at $x=a$ and $f(x)$ is continuous at $x=g(a)$ then $(f \circ g)(x)$ is continuous at $x=a$.
- If $f(x)$ is continuous in a closed interval $[a, b]$ then it is bounded on this interval.
- If $f(x)$ is a continuous function defined on $[a, b]$ such that $f(a)$ and $f(b)$ are of opposite signs, then there is atleast one value of x for which $f(x)$ vanishes. i.e. if $f(a)>0, f(b)<0 \Rightarrow \exists c \in(a, b)$ such that $f(c)=0$.

DISCONTINUOUS FUNCTION

- Discontinuous function : A function ' f ' which is not continuous at a point $x=a$ in its domain is said to be discontinuous there at. The point ' a ' is called a point of discontinuity of the function.
The discontinuity may arise if $\lim _{x \rightarrow a^{+}} f(x)$ as well as $\lim _{x \rightarrow a^{-}} f(x)$ both may exist, but either of the two or both may not be equal to $f(a)$.

DIFFERENTIABILITY OF A FUNCTION AT A POINT

- A function $f(x)$ is said to be differentiable (finitely) at $x=a$ if R.H.D. at $x=a\left[f^{\prime}\left(a^{+}\right)\right]=$L.H.D. at $x=a$ $\left[f^{\prime}\left(a^{-}\right)\right]=$finite value
i.e. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=$ finite and the common limit is called the derivative of $f(x)$ at $x=a$, denoted by $f^{\prime}(a)$. Clearly, $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}\{x \rightarrow a$ from the left as well as from the right\}.

SOME STANDARD RESULTS ON

DIFFERENTIABILITY

- Every polynomial function is differentiable at each $x \in R$.
- The exponential function $a^{x}, a>0$ is differentiable at each $x \in R$.
- Every constant function is differentiable at each $x \in R$.
- The logarithmic function is differentiable at each point in its domain.
- Trigonometric and inverse trigonometric functions are differentiable in their domains.
- The sum, difference, product and quotient of two differentiable functions is differentiable.
- The composition of differentiable function is a differentiable function.

IMPORTANT POINTS

- Any continuous function $f(x)$, which has at least one local maximum or local minimum, is many-one.
- If $\lim _{x \rightarrow a} f(x)$ does not exist, then we can not remove this discontinuity. So this become a non-removable discontinuity or essential discontinuity.
- If f is continuous at $x=c$ and g is discontinuous at $x=c$, then $f+g$ and $f-g$ are discontinuous $f \cdot g$ may be continuous.
- If f and g are discontinuous at $x=c$, then $f+g, f-g$ and $f \cdot g$ may still be continuous.
- Point functions (domain and range consists one value only) is not a continuous function.
- If a function is differentiable at a point, then it is continuous also at that point.
i.e., Differentiability \Rightarrow Continuity, but the converse need not be true.
- If $f(x)$ and $g(x)$ both are not differentiable at $x=a$ then the product function $f(x) \cdot g(x)$ and sum function $f(x)+g(x)$ can still be differentiable at $x=a$.
- If $f(x)$ is differentiable at $x=a$ and $g(x)$ is not differentiable at $x=a$ then the sum function $f(x)+g(x)$ is also not differentiable at $x=a$.

PROBLEMS

Single Correct Answer Type

1. If $f(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then $\lim _{x \rightarrow 0} f(x)=$
(a) 1
(b) 0
(c) -1
(d) 2
2. $\lim _{x \rightarrow 0} \frac{x^{3} \cot x}{1-\cos x}=$
(a) 0
(b) 1
(c) 2
(d) -2
3. $\lim _{n \rightarrow \infty} \frac{n(2 n+1)^{2}}{(n+2)\left(n^{2}+3 n-1\right)}=$
(a) 0
(b) 2
(c) 4
(d) ∞
4. $\lim _{x \rightarrow a} \frac{\sqrt{3 x-a}-\sqrt{x+a}}{x-a}=$
(a) $\sqrt{2} a$
(b) $1 / \sqrt{2 a}$ (c) $2 a$
(d) $1 / 2 a$
5. If $f(x)=\left\{\begin{array}{r}x \text {, when } 0 \leq x \leq 1 \\ 2-x \text {, when } 1<x \leq 2\end{array}\right.$, then
(a) 1
(b) 2
(c) 0
(d) -1
6. $\lim _{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1}=$
(a) 0
(b) 1
(c) -1
(d) does not exist
7. $\lim _{x \rightarrow 0} \frac{\log \cos x}{x}=$
(a) 0
(b) 1
(c) ∞
(d) $1 / 2$
8. If $f(9)=9, f^{\prime}(9)=4$, then $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}=$
(a) 2
(b) 4
(c) -2
(d) -4
9. $\lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{x}=$
(a) 1
(b) e
(c) $1 / e$
(d) 3
10. $\lim _{\alpha \rightarrow \pi / 4} \frac{\sin \alpha-\cos \alpha}{\alpha-\frac{\pi}{4}}=$
(a) $\sqrt{2}$
(b) $1 / \sqrt{2}$
(c) 1
(d) -1
11. $\lim _{x \rightarrow \pi} \tan x \log \sin x=$ $x \rightarrow \pi / 2$
(a) 0
(b) 1
(c) -1
(d) 2
12. $\lim _{x \rightarrow 0} \frac{\cos a x-\cos b x}{x^{2}}=$
(a) $\frac{a^{2}-b^{2}}{2}$
(b) $\frac{b^{2}-a^{2}}{2}$
(c) $a^{2}-b^{2}$
(d) $b^{2}-a^{2}$
13. $\lim _{x \rightarrow 0} \frac{(1+x)^{5}-1}{(1+x)^{3}-1}=$
(a) 0
(b) 1
(c) $5 / 3$
(d) $3 / 5$
14. $\lim _{x \rightarrow 0} \frac{\sin 2 x+\sin 6 x}{\sin 5 x-\sin 3 x}=$
(a) $1 / 2$
(b) $1 / 4$
(c) 2
(d) 4
15. $\lim _{x \rightarrow 0} x \log (\sin x)=$
(a) -1
(b) $\log _{e} 1$
(c) 1
(d) $\log 2$
16. $\lim _{x \rightarrow 0}\left\{\frac{\sin x-x+\frac{x^{3}}{6}}{x^{5}}\right\}=$
(a) $1 / 120$
(b) $-1 / 120$
(c) $1 / 20$
(d) $-1 / 20$
17. $\lim _{h \rightarrow 0} \frac{(a+h)^{2} \sin (a+h)-a^{2} \sin a}{h}=$
(a) $a \cos a+a^{2} \sin a$
(b) $a \sin a+a^{2} \cos a$
(c) $2 a \sin a+a^{2} \cos a$
(d) $2 a \cos a+a^{2} \sin a$
18. $\lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}=$
(a) $\frac{1}{\sqrt{3}}$
(b) $\frac{2}{3 \sqrt{3}}$
(c) $\frac{2}{\sqrt{3}}$
(d) $\frac{2}{3}$
19. $\lim _{y \rightarrow 0} \frac{(x+y) \sec (x+y)-x \sec x}{y}=$
(a) $\sec x(x \tan x+1)$
(b) $x \tan x+\sec x$
(c) $x \sec x+\tan x$
(d) $-2 / 3$
20. $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}=$
(a) $1 / 2$
(b) $-1 / 2$
(c) $2 / 3$
(d) 4
21. $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{\left(\cos ^{-1} x\right)^{2}}=$
(a) 1
(b) $1 / 2$
(c) $1 / 4$
(d) none of these
22. $\lim _{x \rightarrow \pi / 4} \frac{\sqrt{2} \cos x-1}{\cot x-1}=$
(a) $\frac{1}{\sqrt{2}}$
(b) $\frac{1}{2}$
(c) $\frac{1}{2 \sqrt{2}}$
(d) 1
23. $\lim _{x \rightarrow 0}\left[\frac{x}{\tan ^{-1} 2 x}\right]=$
(a) 0
(b) $1 / 2$
(c) 1
(d) ∞
24. $\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}=$
(a) 1
(b) -1
(c) 0
(d) does not exist
25. $\lim _{x \rightarrow \infty}\left(\frac{x+2}{x+1}\right)^{x+3}$ is
(a) 1
(b) e
(c) e^{2}
(d) e^{3}
26. $\lim _{x \rightarrow 0} \frac{\sin x+\log (1-x)}{x^{2}}$ is equal to
(a) 0
(b) $1 / 2$
(c) $-1 / 2$
(d) 2
27. The value of $\lim _{x \rightarrow \infty} \frac{x^{2} \sin \frac{1}{x}-x}{1-|x|}$ is
(a) 0
(b) 1
(c) -1
(d) 2
28. $\lim _{x \rightarrow-1} \frac{\sqrt{\pi}-\sqrt{\cos ^{-1} x}}{\sqrt{x+1}}$ is given by
(a) $\frac{1}{\sqrt{\pi}}$
(b) $\frac{1}{\sqrt{2 \pi}}$
(c) 1
(d) 0
29. $\lim _{x \rightarrow \infty}[\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}]$ is equal to
(a) 0
(b) $1 / 2$
(c) $\log 2$
(d) e^{2}
30. If $f(x)=\left\{\begin{array}{c}\frac{x^{2}-4 x+3}{x^{2}-1}, \text { for } x \neq 1 \\ 2, \text { for } x=1\end{array}\right.$, then
(a) $\lim _{x \rightarrow 1^{+}} f(x)=2$
(b) $\lim _{x \rightarrow 1^{-}} f(x)=3$
(c) $f(x)$ is discontinuous at $x=1$
(d) none of these
31. If $f(x)=\left\{\begin{array}{c}x-1, x<0 \\ \frac{1}{4}, x=0 \text {, then } \\ x^{2}, x>0\end{array}\right.$
(a) $\lim _{x \rightarrow 0^{+}} f(x)=1$
(b) $\lim _{x \rightarrow 0^{-}} f(x)=1$
(c) $f(x)$ is discontinuous at $x=0$
(d) none of these
32. At which points the function $f(x)=\frac{x}{[x]}$, where $[\cdot]$ is greatest integer function, is discontinuous
(a) only positive integers
(b) all positive and negative integers and (0,1)
(c) all rational numbers
(d) none of these
33. If $f(x)=\left\{\begin{array}{c}-x^{2} \text {, when } x \leq 0 \\ 5 x-4, \text { when } 0<x \leq 1 \\ 4 x^{2}-3 x \text {, when } 1<x<2 \\ 3 x+4 \text {, when } x \geq 2\end{array}\right.$, then
(a) $f(x)$ is continuous at $x=0$
(b) $f(x)$ is continuous at $x=2$
(c) $f(x)$ is discontinuous at $x=1$
(d) none of these
34. Let $f(x)=\left\{\begin{array}{r}\frac{x-4}{|x-4|}+a, x<4 \\ a+b, x=4 \text {. } \\ \frac{x-4}{|x-4|}+b, x>4\end{array}\right.$

Then $f(x)$ is continuous at $x=4$ when
(a) $a=0, b=0$
(b) $a=1, b=1$
(c) $a=-1, b=1$
(d) $a=1, b=-1$
35. The value of $f(0)$, so that the function $f(x)=\frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}},(x \neq 0)$ is continuous, is given by
(a) $2 / 3$
(b) 6
(c) 2
(d) 4
36. If the function $f(x)=\left\{\begin{array}{c}1+\sin \frac{\pi x}{2}, \text { for }-\infty<x \leq 1 \\ a x+b, \text { for } 1<x<3 \\ 6 \tan \frac{\pi x}{12}, \text { for } 3 \leq x<6\end{array}\right.$ is continuous in the interval $(-\infty, 6)$, then the values of a and b are respectively
(a) 0,2
(b) 1,1
(c) 2,0
(d) 2,1
37. The values of A and B such that the function $f(x)=\left\{\begin{array}{cc}-2 \sin x & , \quad x \leq-\frac{\pi}{2} \\ A \sin x+B & ,-\frac{\pi}{2}<x<\frac{\pi}{2}, \text { is continuous } \\ \cos x, & x \geq \frac{\pi}{2}\end{array}\right.$ everywhere are
(a) $A=0, B=1$
(b) $A=1, B=1$
(c) $A=-1, B=1$
(d) $A=-1, B=0$
38. Function $f(x)=\frac{1-\cos 4 x}{8 x^{2}}$, where $x \neq 0$ and $f(x)=k$ where $x=0$ is a continous function at $x=0$ then the value of k will be
(a) $k=0$
(b) $k=1$
(c) $k=-1$
(d) none of these
39. Let $f(x)=\left\{\begin{array}{l}x^{p} \sin \frac{1}{x}, x \neq 0 \\ 0 \quad, x=0\end{array}\right.$, then $f(x)$ is continuous but not differential at $x=0$ if
(a) $0<p \leq 1$
(b) $1 \leq p<\infty$
(c) $-\infty<p<0$
(d) $p=0$
40. If $f(x)=\left\{\begin{array}{c}x \frac{e^{(1 / x)}-e^{(-1 / x)}}{e^{(1 / x)}+e^{(-1 / x)}}, x \neq 0 \\ 0, x=0\end{array}\right.$ then which of the following is true?
(a) f is continuous and differentiable at every point
(b) fis continuous at every point but is not differentiable
(c) f is differentiable at every point
(d) f is differentiable only at the origin
41. If $f(x)=|x-3|$, then f is
(a) discontinuous at $x=2$
(b) not differentiable at $x=2$
(c) differentiable at $x=3$
(d) Continuous but not differentiable at $x=3$
42. Consider $f(x)=\left\{\begin{array}{r}\frac{x^{2}}{|x|}, x \neq 0 \\ 0, x=0\end{array}\right.$
(a) $f(x)$ is discontinuous everywhere
(b) $f(x)$ is continuous everywhere
(c) $f^{\prime}(x)$ exists in $(-1,1)$
(d) $f^{\prime}(x)$ exists in $(-2,2)$
43. The function $y=e^{-|x|}$ is
(a) continuous and differentiable at $x=0$
(b) neither continuous nor differentiable at $x=0$
(c) continuous but not differentiable at $x=0$
(d) not continuous but differentiable at $x=0$
44. The left-hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k, k$ is an integer and $[x]=$ greatest integer $\leq x$, is
(a) $(-1)^{k}(k-1) \pi$
(b) $(-1)^{k-1}(k-1) \pi$
(c) $(-1)^{k} k \pi$
(d) $(-1)^{k-1} k \pi$
45. The value of m for which the function $f(x)=\left\{\begin{array}{c}m x^{2}, x \leq 1 \\ 2 x, x>1\end{array}\right.$ is differentiable at $x=1$, is
(a) 0
(b) 1
(c) 2
(d) does not exist
46. $f(x)=||x|-1|$ is not differentiable at
(a) 0
(b) $\pm 1,0$
(c) 1
(d) ± 1

Multiple Correct Answer Type

47. Let a function $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x)+f(y), \forall x, y \in R$ then
(a) f is continuous for all $x \in R$ if it is continuous at $x=0$
(b) $f(x)=x \cdot f(1) \forall x \in R$, if ' f ' is continuous
(c) $f(x)=(f(1))^{x} \forall x \in R$, if ' f ' is continuous
(d) $f(x)$ is differentiable for all $x \in R$
48. Let $\phi\left(\frac{x+2 y}{3}\right)=\frac{\phi(x)+2 \phi(y)}{3} \forall x, y \in R$ and $\phi^{\prime}(0)=1$ and $\phi(0)=2$ then
(a) $\phi(x)$ is continuous $\forall x \in R$
(b) $\phi(x)$ is differentiable $\forall x \in R$
(c) $\phi(x)$ is both continuous and differentiable
(d) $\phi(x)$ is discontinuous at $x=0$
49. Consider the function ' ϕ ' defined in $[0,1]$ as $\phi(x)=\left\{\begin{array}{cll}x^{2} \cdot \sin \left(\frac{1}{x}\right) & ; & \text { if } \\ 0 \neq 0 \\ 0 & ; & \text { if }\end{array}\right.$ x=0 then
(a) $\phi(x)$ has right derivate at $x=0$
(b) $\phi^{\prime}(x)$ is discontinuous at $x=0$
(c) $\phi^{\prime}(x)$ is continuous at $x=0$
(d) $\phi^{\prime}(x)$ is differentiable at $x=0$
50. The in-circle of $\triangle A B C$ touches side $B C$ at D. Then difference between $B D$ and $C D$ (R is circum-radius of $\triangle A B C$)
(a) $\left|4 R \sin \frac{A}{2} \sin \frac{B-C}{2}\right|$
(b) $\left|4 R \cos \frac{A}{2} \sin \frac{B-C}{2}\right|$
(c) $|b-c|$
(d) $\left|\frac{b-c}{2}\right|$
51. If $f(x)=\left\{\begin{array}{cc}\frac{x}{1+e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then
(a) $f^{\prime}\left(0^{+}\right)=1$
(b) $f^{\prime}\left(0^{+}\right)=0$
(c) $f^{\prime}\left(0^{-}\right)=1$
(d) $f^{\prime}\left(0^{-}\right)=0$
52. Consider the function $y=f(x)=\sqrt{1-\sqrt{1-x^{2}}}$. Then the true statements among the following is/are
(a) f is continuous in its domain
(b) f is differentiable in $(-1,1)$
(c) $R f^{\prime}(0)=\sqrt{2}$ and $L f^{\prime}(0)=-\sqrt{2}$
(d) If $\pi<\theta<\frac{3 \pi}{2}$ then $f^{\prime}(\sin \theta)=\frac{\cos \frac{\theta}{2}}{\sqrt{2} \cos \theta}$
53. If $f(x)=|x-a| \phi(x)$, where $\phi(x)$ is a continuous function, then
(a) $f^{\prime}\left(a^{+}\right)=\phi(a)$
(b) $f^{\prime}\left(a^{-}\right)=-\phi(a)$
(c) $f^{\prime}\left(a^{+}\right)=f^{\prime}\left(a^{-}\right)$
(d) $f^{\prime}(a)$ does not exist
54. $f(x)=\left\{\begin{array}{cc}{\left[|x|\left[\frac{1}{|x|}\right]\right],} & |x| \neq \frac{1}{n}, n \in N, \\ 0, & |x|=\frac{1}{n}\end{array}\right.$ then, (where
[.] denotes greatest integer function)
(a) f is differentiable everywhere
(b) f is continuous everywhere
(c) f is periodic
(d) f is not an odd function
55. If $f(x)=2+\left|\sin ^{-1} x\right|$, it is
(a) continuous no where
(b) continuous everywhere in its domain
(c) differentiable no where in its domain
(d) not differentiable at $x=0$
56. $f(x)=\cos \pi(|x|+[x])$, then f is (where [.] denotes greatest integer function)
(a) continuous at $x=1 / 2$
(b) continuous at $x=0$
(c) differentiable in $(-1,0)$
(d) differentiable in $(0,1)$

Comprehension Type

Paragraph for Q. No. 57 to 59
Let $p(x)$ be a polynomial with positive leading coefficient and $p(0)=0$; and $p(p(x))=x \cdot \int_{0}^{x} p(t) d t, \forall x \in R$. Then 57. Degree of the polynomial $p(x)$ is
(a) 4
(b) 3
(c) 5
(d) 2
58. $\frac{p^{\prime}(x)}{|x|}$ is discontinuous at $x=$
(a) 0
(b) 1
(c) -1
(d) none of these
59. If $p(1)=3, p(-1)=5$ and $g(x)$ is inverse of $p^{\prime}(x)$ then $g^{\prime}(0)$ is
(a) is equal to $1 / 4$
(b) is equal to $1 / 8$
(c) is equal to 8
(d) does not exist

Paragraph for Q. No. 60 to 62
For $x>0$, let $f(x)=\lim _{n \rightarrow \infty} \frac{\log (2+x)+x^{2^{n}} \sin x}{1+x^{2^{n}}}$
60. $\lim _{x \rightarrow 0^{+}} f(x)$ is equal to
(a) 0
(b) $\log _{e} 3$
(c) $\log _{e} 2$
(d) does not exist
61. At $x=1, f^{\prime}(x)$ is
(a) continuous
(b) discontinuous
(c) both continuous and differentiable
(d) continuous but not differentiable.
62. In $(0, \pi / 2$], the number of points at which $f(x)$ vanishes is
(a) 0
(b) 1
(c) 2
(d) 3

Paragraph for Q. No. 63 to 65
A function $f(x)$ is said to be continuous at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$. i.e., $\lim _{x \rightarrow a} f(x)=f(a)$
When $f(x)$ is not continuous at $x=a$ we say that $f(x)$ discontinuous at $x=a$.
63. If $f(x)=\lim _{m \rightarrow \infty} \sin ^{2 m} x$, , then number of $\operatorname{point}(\mathrm{s})$ where $f(x)$ is discontinuous is
(a) 0
(b) 1
(c) 2
(d) infinitely many
64. $\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$
(a) exists and it equals $\sqrt{2}$
(b) exists and it equals $-\sqrt{2}$
(c) does not exists because L.H.L. \neq R.H.L.
(d) exists and it equals $1 / 2$
65. In order that the function $f(x)=(x+1)^{\cot x}$ is continuous at $x=0, f(0)$ must be defined as
(a) 0
(b) e
(c) $1 / e$
(d) 1

Matrix - Match Type

66. Match the following.

Column I		Column II	
(A)	$f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ is not differentiable at	(p)	$x=1$
(B)	$f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ is not differentiable at	(q)	$x=-1$
(C)	$f(x)=\cos ^{-1}\left(4 x^{3}-3 x\right)$ is not differentiable at	(r)	$x=1 / 2$
(D)	$f(x)=\sin ^{-1}\left(3 x-4 x^{3}\right)$ is not differentiable at	(s)	$x=-1 / 2$

67. Match the following.

Column I		Column II	
(A)	$f(x)=\|x\|$	(p)	Continuous at $x=0$
(B)	$f(x)=x^{n}\|x\|, n \in N$	(q)	Discontinuous at $x=0$
(C)	$f(x)=\left\{\begin{array}{cc}x \ln \|\sin x\|, x \neq 0 \\ 0 & , x=0\end{array}\right.$	(r)	Differentiable at $x=0$
(D)	$f(x)=\left\{\begin{array}{cc}x e^{1 / x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$	(s)	Non- differentiable at $x=0$

68. Match the following.

Column I		Column II	
(A)	$f(x)=\sin (n[\pi])$ (where $[\cdot] \operatorname{denote}$ G.I.F)	(p)	Differentiable everywhere
(B)	$f(x)=\sin ((x-[x]) \pi)$ (where [•] denote G.I.F)	(q)	Non- differentiable at $x=2$
(C)	$f(x)=\left\{\begin{array}{c}x \sin \left(\frac{1}{x}\right), \text { if } x \neq 0 \\ 0, \quad \text { if } x=0\end{array}\right.$	(r)	Non- differentiable at -1 and 1
(D)	$f(x)=\|2-x\|+[2+x]$ $($ where $[\cdot]$ denote G.I.F)	(s)	Continuous at $x=0$ but not differen- tiable at $x=0$

Integer Answer Type

69. Let $f(x)=[x]+\left[x+\frac{1}{4}\right]+\left[x+\frac{1}{2}\right]+\left[x+\frac{3}{4}\right]$. Then no. of points of discontinuity of $f(x)$ in $[0,1]$ is ([.] denotes G.I.F)
70. If $\alpha \in(-\infty,-1) \cup(-1,0)$ then the number of points where the function $f(x)=\left|x^{2}+(\alpha-1)\right| x|-\alpha|$ is not differentiable is
71. Let $f(x)= \begin{cases}x^{2} \sum_{r=0}^{\left[\frac{1}{|x|}\right]} r ; x \neq 0 \\ \frac{k}{2} ; & \text { otherwise }\end{cases}$
([.]denotes the greatest integer function). The value of k such that f become continuous at $x=0$ is
72. Let $f(x)=\left[x^{2}\right] \sin \pi x, x \in R$ the number of points in the interval $(0,3]$ at which the function is discontinuous is
73. Ifthefunction f defined by $f(x)=\frac{\log (1+x)^{1+x}}{x^{2}}-\frac{1}{x}$, $x \neq 0$ is continuous at $x=0$, then $6(f(0))=$
74. If $f(x)=\left\{\begin{array}{ll}\frac{\tan \left[x^{2}\right] \pi}{a x^{2}}+a x^{3}+b & , 0 \leq x \leq 1 \\ 2 \cos \pi x+\tan ^{-1} x & , 1<x \leq 2\end{array}\right.$ is differentiable in $[0,2]$, then $b=\frac{\pi}{k_{1}}-\frac{26}{k_{2}}$. Find $k_{2}-k_{1}$ \{where [•] denotes greatest integer function\}.

SOLUTIONS

1. (b) : Here $f(0)=0$

Since $-1 \leq \sin \frac{1}{x} \leq 1 \Rightarrow-|x| \leq x \sin \frac{1}{x} \leq|x|$
We know that $\lim _{x \rightarrow 0}|x|=0$ and $\lim _{x \rightarrow 0}-|x|=0$
In this way $\lim _{x \rightarrow 0} f(x)=0$.
2. (c)
3. (c) : $\lim _{n \rightarrow \infty} \frac{n(2 n+1)^{2}}{(n+2)\left(n^{2}+3 n-1\right)}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{4 n^{3}+4 n^{2}+n}{n^{3}+5 n^{2}+5 n-2} \\
& =\lim _{n \rightarrow \infty} \frac{n^{3}\left(4+\frac{4}{n}+\frac{1}{n^{2}}\right)}{n^{3}\left(1+\frac{5}{n}+\frac{5}{n^{2}}-\frac{2}{n^{3}}\right)}=4
\end{aligned}
$$

4. (b)
5. (a) : $\lim _{x \rightarrow 1-} f(x)=\lim _{h \rightarrow 0}(1-h)=1$
$\lim _{x \rightarrow 1-} f(x)=\lim _{h \rightarrow 0}(1-h)=1$
and $\lim _{x \rightarrow 1+} f(x)=\lim _{h \rightarrow 0} 2-(1+h)=1$
Hence limit of function is 1 .

6. (d)
7. (a) : $\lim _{x \rightarrow 0} \frac{\log \cos x}{x}=\lim _{x \rightarrow 0} \frac{\log \left[1-2 \sin ^{2} \frac{x}{2}\right]}{x}$
$=\lim _{x \rightarrow 0} \frac{-\left[2 \sin ^{2} \frac{x}{2}+\left(\frac{2 \sin ^{2} \frac{x}{2}}{2}\right)^{2}+\ldots \ldots .\right]}{x}=0$
8. (b) : Applying L-Hospital's rule,
$\lim _{x \rightarrow 9} \frac{\frac{1}{2 \sqrt{f(x)}} \cdot f^{\prime}(x)}{\frac{1}{2 \sqrt{x}}}=\frac{\frac{f^{\prime}(9)}{\sqrt{f(9)}}}{\frac{1}{\sqrt{9}}}=\frac{\frac{4}{3}}{\frac{1}{3}}=4$
9. (a) : $\lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{x}=\lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{\sin x} \times \frac{\sin x}{x}$
$=\lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{\sin x} \times \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \times 1=1$.
10. (a)
11. (a) : $\lim \tan x \log \sin x=\lim \underline{\log \sin x}$

$$
x \rightarrow \frac{\pi}{2} \quad x \rightarrow \frac{\pi}{2} \quad \cot x
$$

$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\frac{1}{\sin x} \cos x}{-\operatorname{cosec}^{2} x}=0$ (Applying L-Hospital's rule)
12. (b) $\lim _{x \rightarrow 0} \frac{\cos a x-\cos b x}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{2 \sin \left(\frac{a+b}{2}\right) x \cdot \sin \left(\frac{b-a}{2}\right) x}{\left(\frac{a+b}{2}\right) x \cdot \frac{2}{a+b} \cdot \frac{2}{b-a} \cdot\left(\frac{b-a}{2}\right) x}=\frac{b^{2}-a^{2}}{2}$
13. (c): $\lim _{x \rightarrow 0} \frac{x\left[{ }^{5} C_{1}+{ }^{5} C_{2} x+{ }^{5} C_{3} x^{2}+{ }^{5} C_{4} x^{3}+{ }^{5} C_{5} x^{4}\right]}{x\left[{ }^{3} C_{1}+{ }^{3} C_{2} x+{ }^{3} C_{3} x^{2}\right]}=\frac{5}{3}$.
14. (d): $\lim _{x \rightarrow 0} \frac{2 \sin 4 x \cos 2 x}{2 \sin x \cos 4 x}$
$=\lim _{x \rightarrow 0} 4\left(\frac{\sin 4 x}{4 x}\right)\left(\frac{x}{\sin x}\right) \frac{\cos 2 x}{\cos 4 x}=4$
15. (b) : $\lim _{x \rightarrow 0} x \log \sin x=\lim _{x \rightarrow 0} \log (\sin x)^{x}$
$=\log \left[\lim _{x \rightarrow 0}(1+\sin x-1)^{\frac{x(\sin x-1)}{\sin x-1}}\right]$
$=\log _{e}\left[e^{\lim _{x \rightarrow 0} x(\sin x-1)}\right]=\log _{e} 1$.
16. (a)
17. (c) : $\lim _{h \rightarrow 0} \frac{(a+h)^{2} \sin (a+h)-a^{2} \sin a}{h}$
$=\lim _{h \rightarrow 0} \frac{2(a+h) \sin (a+h)+(a+h)^{2} \cos (a+h)}{1}$
$=2 a \sin a+a^{2} \cos a$.
18. (b)
19. (a)
20. (a)
21. (c) : Put $\cos ^{-1} x=y$ and $x \rightarrow 1 \Rightarrow y \rightarrow 0$
$\therefore \lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{\left(\cos ^{-1} x\right)^{2}}=\lim _{y \rightarrow 0} \frac{1-\sqrt{\cos y}}{y^{2}}$
Now rationalizing it, we get $\lim _{y \rightarrow 0} \frac{(1-\cos y)}{y^{2}(1+\sqrt{\cos y})}$
$=\lim _{y \rightarrow 0} \frac{1-\cos y}{y^{2}} . \lim _{y \rightarrow 0} \frac{1}{1+\sqrt{\cos y}}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
22. (b) : $\lim _{x \rightarrow \pi / 4} \frac{\sqrt{2} \cos x-1}{\cot x-1}$

Apply L'Hospitals's rule, we get
$\lim _{x \rightarrow \pi / 4} \sqrt{2} \sin ^{3} x=\frac{\sqrt{2}}{2 \sqrt{2}}=\frac{1}{2}$.
23. (b) : Let $\tan ^{-1} 2 x=\theta \Rightarrow x=\frac{1}{2} \tan \theta$
and as $x \rightarrow 0, \theta \rightarrow 0$
$\Rightarrow \lim _{x \rightarrow 0} \frac{x}{\tan ^{-1} 2 x}=\lim _{\theta \rightarrow 0} \frac{\frac{1}{2} \tan \theta}{\theta}=\frac{1}{2}$.
24. (d): $\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}=\lim _{x \rightarrow 0} \frac{|\sin x|}{x}$

So, $\lim _{x \rightarrow 0^{+}} \frac{|\sin x|}{x}=1$ and $\lim _{x \rightarrow 0^{-}} \frac{|\sin x|}{x}=-1$
Hence limit does not exist.
25. (b) : Let $A=\lim _{x \rightarrow \infty}\left(\frac{x+2}{x+1}\right)^{x+3}$
$=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x+1}\right)^{x+3}=\lim _{x \rightarrow \infty}\left[\left(1+\frac{1}{x+1}\right)^{x+1}\right]^{\frac{(x+3)}{(x+1)}}=e$
26. (c) : Apply L-Hospital's rule, we get
$\lim _{x \rightarrow 0} \frac{\cos x-\frac{1}{1-x}}{2 x}=\lim _{x \rightarrow 0} \frac{-\sin x-\frac{1}{(1-x)^{2}}}{2}=-\frac{1}{2}$
27. (a) : Putting $x=\frac{1}{t}$, the given limit
$=\lim _{t \rightarrow 0} \frac{\frac{\sin t}{t}-1}{t-1}=\frac{1-1}{0-1}=0$,
28. (b)
29. (b) : $\lim _{x \rightarrow \infty}\left[\begin{array}{l}\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x} \\ x+\sqrt{x+\sqrt{x}}-x\end{array}\right]$

$$
=\lim _{x \rightarrow \infty} \frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}+\sqrt{x}}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{\sqrt{1+x^{-1 / 2}}}{\sqrt{1+\sqrt{x^{-1}+x^{-3 / 2}}}+1}=\frac{1}{2}
$$

30. (c) : $f(x)=\left\{\frac{x^{2}-4 x+3}{x^{2}-1}\right\}$, for $x \neq 1$ and $f(x)=2$,
for $x=1$
$\therefore f(1)=2, f\left(1^{+}\right)=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-4 x+3}{x^{2}-1}=\lim _{x \rightarrow 1^{+}} \frac{(x-3)}{(x+1)}=-1$
$f\left(1^{-}\right)=\lim _{x \rightarrow 1^{-}} \frac{x^{2}-4 x+3}{x^{2}-1}=-1$
Hence the function is discontinuous at $x=1$.
31. (c)
32. (b) : When $0 \leq x<1$
$f(x)$ doesn't exist as $[x]=0$ here.
Also, $\lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$ does not exist.
Hence $f(x)$ is discontinuous at all integers and also in $(0,1)$.
33. (b): $\lim _{x \rightarrow 0^{-}} f(x)=0, f(0)=0, \lim _{x \rightarrow 0^{+}} f(x)=-4$
$\therefore f(x)$ is discontinuous at $x=0$
and $\lim _{x \rightarrow 1^{-}} f(x)=1$ and $\lim _{x \rightarrow 1^{+}} f(x)=1, f(1)=1$
Hence $f(x)$ is continuous at $x=1$
Also, $\lim _{x \rightarrow 2^{-}} f(x)=4(2)^{2}-3 \cdot 2=10$
$f(2)=10$ and $\lim _{x \rightarrow 2^{+}} f(x)=3(2)+4=10$
Hence $f(x)$ is continuous at $x=2$.
34. (d): $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{h \rightarrow 0} f(4-h)$
$=\lim _{h \rightarrow 0} \frac{4-h-4}{|4-h-4|}+a=\lim _{h \rightarrow 0}-\frac{h}{h}+a=a-1$
$=\lim _{x \rightarrow 4^{+}} f(x)=\lim _{h \rightarrow 0} f(4+h)=\lim _{h \rightarrow 0} \frac{4+h-4}{|4+h-4|}+b=b+1$
and $f(4)=a+b$
Since $f(x)$ is continuous at $x=4$
Therefore $\lim _{x \rightarrow 4-} f(x)=f(4)=\lim _{x \rightarrow 4+} f(x)$
$\Rightarrow a-1=a+b=b+1 \Rightarrow b=-1$ and $a=1$.
35. (c)
36. (c)
37. (c) : For continuity at all $x \in R$, we must have
$f\left(-\frac{\pi}{2}\right)=\lim _{x \rightarrow(-\pi / 2)^{-}}(-2 \sin x)=\lim _{x \rightarrow(-\pi / 2)^{+}}(A \sin x+B)$
$\Rightarrow \quad 2=-A+B$
and $f\left(\frac{\pi}{2}\right)=\lim _{x \rightarrow(\pi / 2)^{-}}(A \sin x+B)=\lim _{x \rightarrow(\pi / 2)^{+}}(\cos x)$
$\Rightarrow \quad 0=A+B$
From (i) and (ii) we get, $A=-1$ and $B=1$.
38. (b)
39. (a) : $f(x)=x^{p} \sin \frac{1}{x}, x \neq 0$ and $f(x)=0, x=0$

Since at $x=0, f(x)$ is a continuous function
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)=0 \Rightarrow \lim _{x \rightarrow 0} x^{p} \sin \frac{1}{x}=0 \Rightarrow p>0$
$f(x)$ is differentiable at $x=0$, if $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ exists
$\Rightarrow \lim _{x \rightarrow 0} \frac{x^{p} \sin \frac{1}{x}-0}{x-0}$ exists $\Rightarrow \lim _{x \rightarrow 0} x^{p-1} \sin \frac{1}{x}$ exists
$\Rightarrow p-1>0$ or $p>1$
If $p \leq 1$, then $\lim _{x \rightarrow 0} x^{p-1} \sin \left(\frac{1}{x}\right)$ does not exist and at $x=0 f(x)$ is not differentiable.
\therefore for $0<p \leq 1 f(x)$ is a continuous function at $x=0$ but not differentiable.
40. (b)
41. (d): $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{h \rightarrow 0} f(3-h)=\lim _{h \rightarrow 0}|3-h-3|=0$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{h \rightarrow 0} f(3+h)$

$$
=\lim _{h \rightarrow 0}|3+h-3|=0
$$

$\because \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3)$

Hence f is continuous at $x=3$
Now $L f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3-h)-f(3)}{-h}$
$=\lim _{h \rightarrow 0} \frac{|3-h-3|-0}{-h}=\lim _{h \rightarrow 0} \frac{h}{-h}=-1$
$R f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{|3+h-3|-0}{h}=1$
$\because \quad L f^{\prime}(3) \neq R f^{\prime}(3)$. Hence f is not differentiable at $x=3$.
42. (b)
43. (c)
44. (a) : $f^{\prime}\left(k^{-}\right)=\lim _{h \rightarrow 0} \frac{[k-h] \sin \pi(k-h)-[k] \sin \pi k}{-h}$
$=\lim _{h \rightarrow 0} \frac{(-1)^{k-1}(k-1) \sin \pi h-k \times 0}{-h}=(-1)^{k} \cdot(k-1) \pi$
45. (b) : $L f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}$
$=\lim _{h \rightarrow 0} \frac{m(1-h)^{2}-m}{-h}=\lim _{h \rightarrow 0} \frac{m\left[1+h^{2}-2 h-1\right]}{-h}$
$=\lim _{h \rightarrow 0} m(2-h)=2 m$
and $R f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{2(1+h)-m}{h}=2$
For differentiability, $L f^{\prime}(1)=R f^{\prime}(1)$.
Hence $m=1$
46. (b) : $= \begin{cases}|x|-1, & |x|-1 \geq 0 \\ -|x|+1, & |x|-1<0\end{cases}$
$=\left\{\begin{array}{l}|x|-1, \quad x \leq-1 \text { or } x \geq 1 \\ -|x|+1, \quad-1<x<1\end{array}\right.$
$= \begin{cases}-x-1, & x \leq-1 \\ x+1, & -1<x<0 \\ -x+1, & 0 \leq x<1 \\ x-1, & x \geq 1\end{cases}$

From the graph. It is clear that $f(x)$ is not differentiable at $x=-1,0$ and 1 .
47. (a, b): If $f(x)$ is continuous at $x=a, \operatorname{lt}_{x \rightarrow a} f(x)=f(a)$

Let $a \in R$ then $\operatorname{lt}_{x \rightarrow a} f(x)=\operatorname{lt}_{h \rightarrow 0} f(a+h)$
$=\operatorname{lt}_{h \rightarrow 0}(f(a)+f(h))=f(a)+\operatorname{lt}_{x \rightarrow 0} f(h)$
$=f(a)+f(0)=f(a+0)=f(a)$
\Rightarrow ' f ' is continuous $\forall x \in R$, as ' a ' is arbitrary
$\because f(x+y)=f(x)+f(y) \Rightarrow f(0)=0 f(1)$
For any + ve inteteger ' n '
$f(1)=f(1+1+\ldots . .+n$ times $)=n f(1)$
For any -ve integer ' m ' we have
$0=f(0)=f[m+(-m)]=f(m)+f(-m)$
$\Rightarrow f(m)=-f(-m)=-(-m) f(1)=m f(1)$
Let p / q be any rational number where ' q ' is $a+$ ve integer and p is any integer, + ve, -ve or zero.
Then $f\left(q \cdot \frac{p}{q}\right)=f\left(\frac{p}{q}+\frac{p}{q}+\ldots q\right.$ times $)$
$=f\left(\frac{p}{q}\right)+f\left(\frac{p}{q}\right)+\ldots . \ldots . . q$ times $=q \cdot f\left(\frac{p}{q}\right)$
$\Rightarrow f(p)=q \cdot f(p / q)$
But $f(p)=p \cdot f(1)$ from previous cases.
$\therefore \quad p \cdot f(1)=q \cdot f(p / q) \Rightarrow f(p / q)=\frac{p}{q} \cdot f(1)$
48. (a, b, c)
49. $(\mathrm{a}, \mathrm{b}):$ Clearly $\phi^{\prime}(x)=2 x \cdot \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)$
if $x \neq 0$ and 0 if $x=0$.
$\Rightarrow \phi^{\prime}(x)$ is discontinuous at $x=0$, as $\cos \left(\frac{1}{x}\right)$ is oscillating in the neighbour hood of ' 0 '.
50. (a, c) : $|B D-C D|=\left|r\left(\cot \frac{B}{2}-\cot \frac{C}{2}\right)\right|$
$=r\left|\frac{\sin \left(\frac{B-C}{2}\right)}{\sin \frac{B}{2} \sin \frac{C}{2}}\right|=\left|4 R \sin \frac{A}{2} \sin \frac{B-C}{2}\right|$
$=\left|4 R \cos \frac{B+C}{2} \sin \frac{B-C}{2}\right|=|2 R(\sin B-\sin C)|=|b-c|$
51. $(\mathrm{b}, \mathrm{c}): f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{1}{1+e^{1 / x}}$
$f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \frac{1}{1+e^{1 / x}}=0$
$f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0^{-}} \frac{1}{1+e^{1 / x}}=1$
52. (a, d) : f is continuous in its domain $[-1,1]$
$f^{\prime}(x)=\frac{x}{2 \sqrt{1-\sqrt{1-x^{2}}} \sqrt{1-x^{2}}}, x \neq 0, x \neq \pm 1$
53. $(\mathbf{a}, \mathrm{b}, \mathrm{d}): f(x)=\left\{\begin{array}{l}(x-a) \phi(x) \text { if } x \geq a \\ (a-x) \phi(x) \text { if } x<a\end{array}\right.$
$\therefore f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a}(x-a) \phi^{\prime}(x)+\phi(x)=\phi(a)$
$f^{\prime}\left(a^{-}\right)=\lim _{x \rightarrow a}(a-x) \phi^{\prime}(x)-\phi(x)=-\phi(a)$
54. $(\mathrm{a}, \mathrm{b}, \mathrm{c})$: If $|x|<1$ and $|x| \neq \frac{1}{n}$,
then $\frac{1}{|x|}-1<\left[\frac{1}{|x|}\right]<\frac{1}{|x|}$
$\Rightarrow 1-|x|<|x|\left[\frac{1}{|x|}\right]<1 \Rightarrow f(x)=0$
If $|x|>1$, then $0<\frac{1}{|x|}<1$ and hence $\left(\frac{1}{|\lambda|}\right)=0$.
Then $f(x)=0$
Hence $f(x)=0$ for all $x \in R$
55. (b, d) : $f(x)=2-\sin ^{-1} x$ if $-1 \leq x \leq 0$
$2+\sin ^{-1} x$ if $0<x \leq 1$
Hence f is continuous everywhere on the domain
$\frac{-1}{\sqrt{1-x^{2}}}$ if $-1<x<0, f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$ if $0<x<1$
$\therefore \quad f$ is not differentiable at $x=0$
56. $(\mathrm{a}, \mathrm{c}, \mathrm{d}): f^{\prime}(x)=\left\{\begin{array}{cl}-\cos \pi x & , \text { if }-1<x<0 \\ 1 & , \text { if } x=0 \\ \cos \pi x & , \text { if } 0<x<1\end{array}\right.$
$\therefore \quad f$ is not continuous at $x=0$
57. (d): Degree of $p(x)$ is 2
58. (a) : $\frac{p^{\prime}(x)}{|x|}=\frac{2 a x+b}{|x|}$ is discontinuous at $x=0$
$\because \frac{2 a x}{|x|}$ is discontinuous. We know if f is continuous
and ' g ' is discontinuous then $f+g$ is discontinuous.
59. (b) : $p(1)=3, p(-1)=5 \Rightarrow a=4, b=-1$,
$\therefore p(x)=4 x^{2}-x$
$p^{\prime}(x)=8 x-1, \quad \because \quad g^{\prime}$ is inverse of $p^{\prime}(x)$
$g(x)=\frac{x+1}{8} ; g^{\prime}(0)=\frac{1}{8}$
60. (c) : Let $0 \leq x<1$, then
$f(x)=\log (2+x) \quad\left(\because \operatorname{lt}_{n \rightarrow \infty} x^{2^{n}}=0\right)$
61. (b) : Let $x=1, f(x)=\frac{1}{2}(\log 3+\sin 1)$

62 (a) : If $x>1$, then
$\operatorname{lt}_{n \rightarrow \infty} \frac{\log (2+x)+x^{2^{n}} \sin x}{1+x^{2^{n}}}=\operatorname{lt}_{n \rightarrow \infty} \frac{\left[\frac{\log (2+x)}{x^{2^{n}}}+\sin x\right]}{\frac{1}{x^{2^{n}}}+1}$
$\therefore f(x)=\left\{\begin{array}{ccc}\log (2+x), & \text { if } 0<x<1 \\ \frac{1}{2}(\log 3+\sin 1), & \text { if } & x=1 \\ \sin x & , \text { if } & x>1\end{array}\right.$

$$
=\sin x\left(\because \operatorname{lt}_{n \rightarrow \infty} \frac{1}{x^{2^{n}}}=0\right)
$$

63. (d): $f(x)=\lim _{m \rightarrow \infty}\left(\sin ^{2} x\right)^{m}=1, x=(2 n+1) \frac{\pi}{2}, n \in I$

$$
=0, x \neq(2 n+1) \frac{\pi}{2}, n \in I
$$

$\therefore f(x)$ is discontinuous at $x=(2 n+1) \frac{\pi}{2}, n \in I$
64. (c) : L.H.L. \neq R.H.L., as $\lim _{x \rightarrow 1^{-}}-\sqrt{2}\left(\frac{\sin (x-1)}{x-1}\right)=-\sqrt{2}$
and $\lim _{x \rightarrow 1^{+}} \sqrt{2}\left(\frac{\sin (x-1)}{x-1}\right)=\sqrt{2}$
65. (b) : $f(x)=\lim _{x \rightarrow 0}(1+x)^{\cot x}=e^{\lim _{x \rightarrow 0} \cot x(1+x-1)}$

$$
=e^{\lim _{x \rightarrow 0} \frac{x}{\tan x}}=e
$$

66. $(\mathrm{A}) \rightarrow(\mathrm{p}, \mathrm{q}),(\mathrm{B}) \rightarrow(\mathrm{p}, \mathrm{q}),(\mathrm{C}) \rightarrow(\mathrm{r}, \mathrm{s}, \mathrm{p}),(\mathrm{D}) \rightarrow(\mathrm{r}, \mathrm{s}, \mathrm{p})$
(A) $y=\left\{\begin{array}{cc}\pi-2 \tan ^{-1} x, & x>1 \\ 2 \tan ^{-1} x & -1 \leq x \leq 1 \\ -\pi-2 \tan ^{-1} x & x<-1\end{array}\right.$
$\therefore \frac{d y}{d x}=\left\{\begin{array}{cc}\frac{-2}{1+x^{2}}, & |x|>1 \\ \frac{2}{1+x^{2}}, & |x|<1 \\ \text { does not exist, } & \text { at }|x|=1\end{array}\right.$
Hence, $f(x)$ is not differentiable at $x=-1,1$
(B) $y=\left\{\begin{array}{cc}\pi+2 \tan ^{-1} x, & \pi<-1 \\ 2 \tan ^{-1} x, & -1<x<1 \\ -\pi+2 \tan ^{-1} x, & x>1\end{array}\right.$
$\therefore \quad \frac{d y}{d x}=\left\{\begin{array}{cl}\frac{2}{1+x^{2}}, & x \in R-\{-1,1\} \\ \text { does not exist, } & \text { at } x=\{-1,1\}\end{array}\right.$
Hence, $f(x)$ is not differentiable at $x=-1,1$
(C) $f(x)=\left\{\begin{array}{cc}2 \pi+3 \cos ^{-1} x, & -1 \leq x \leq-\frac{1}{2} \\ 2 \pi-3 \cos ^{-1} x, & -\frac{1}{2} \leq x \leq \frac{1}{2} \\ 3 \cos ^{-1} x, & \frac{1}{2} \leq x \leq 1\end{array}\right.$
$\left[\frac{-3}{\sqrt{1-x^{2}}}, \quad \frac{1}{2}<|x|<1\right.$
$\therefore \frac{d y}{d x}=f^{\prime}(x)=\left\{\right.$ does not exist, $\quad|x|=\frac{1}{2}$

$$
\frac{3}{\sqrt{1-x^{2}}}, \quad|x|<\frac{1}{2}
$$

Hence, $f(x)$ is not differentiable at $x=\frac{-1}{2}, \frac{1}{2}$
(D) $f(x)=\left\{\begin{array}{cc}\pi-3 \sin ^{-1} x, & \frac{1}{2} \leq x \leq 1 \\ 3 \sin ^{-1} x, & -\frac{1}{2} \leq x \leq \frac{1}{2} \\ -\pi-3 \sin ^{-1} x, & -1 \leq x \leq-\frac{1}{2}\end{array}\right.$
$f^{\prime}(x)=\left\{\begin{array}{cc}\frac{-3}{\sqrt{1-x^{2}}}, & \frac{1}{2}<|x|<1 \\ \text { does not exist, } & |x|=\frac{1}{2} \\ \frac{3}{\sqrt{1-x^{2}}}, & |x|<\frac{1}{2}\end{array}\right.$
Hence, $f(x)$ is not differentiable at $x=\frac{-1}{2}, \frac{1}{2}$.
67. $(A) \rightarrow(p, s),(B) \rightarrow(p, r),(C) \rightarrow(p, s),(D) \rightarrow(q, s)$
(A) $f(x)=\left\{\begin{array}{c}-x, x<0 \\ x, x \geq 0\end{array}\right.$
continuous but not differentiable at $x=0$
(B) $f(x)=x^{n}|x|$
\Rightarrow L.H.D $=$ R.H.D $=0$ at $x=0$
(C) L.H.L $=$ R.H.L $=f(0)=0$ but L.H.D and R.H.D are not finite.
(D) L.H.L. $=0$, R.H.L. $=\lim _{x \rightarrow 0} \frac{e^{1 / x}}{1 / x}$
$=\lim _{x \rightarrow 0} \frac{e^{1 / x}\left(-1 / x^{2}\right)}{\left(-1 / x^{2}\right)}=\lim _{x \rightarrow 0} e^{x \rightarrow 01 / x}=\infty$
68. (A) \rightarrow (p), (B) $\rightarrow(\mathrm{q}, \mathrm{r}, \mathrm{s}),(\mathrm{C}) \rightarrow(\mathrm{s}),(\mathrm{D}) \rightarrow(\mathrm{q}, \mathrm{r})$
(A) We know that $[x] \in I, \forall x \in R$
$\therefore \sin (\pi[x])=\sin \pi x=0 \forall x \in R$
Since every constant function is differentiable in its domain.
$\therefore \quad \sin (\pi[x])$ is differentiable everywhere.
(B) $f(x)=\sin [(x-[x]) \pi]$

Since $x-[x]$ is not differentiable at integral points
$\therefore f(x)=\sin (\pi(x-[x])]$ is not differentiable at $x \in I$
$\therefore \quad$ It is not differentiable at $-1,1$
(C) $\lim _{x \rightarrow 0} f(x)=0$ (a finite quantity between -1 and 1) $=0=f(0)$
$\therefore f(x)$ is continuous at $x=0$ and

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)
$$

Which does not exists.
$\therefore \quad f(x)$ is not differentiable at $x=0$.
(D) $|2-x|$ is continuous everywhere and $[2+x]$ is discontinuous at all integral values of x.
$\therefore f(x)$ is discontinuous at $x=2$.
$\therefore \quad f(x)$ is not differentiable at $x=2$.
69. $(4):[x]+\left[x+\frac{1}{4}\right]+\left[x+\frac{2}{4}\right]+\left[x+\frac{3}{4}\right]=[4 x]$
$\therefore f(x)=[4 x]$ which will become discontinuous at $x=\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}$
70. (5) : Given $f(x)=\left|x^{2}+(\alpha-1)\right| x|-\alpha|$
$\Rightarrow f(x)=|(|x|-1)(|x|+\alpha)|$
$\therefore f(x)$ is not differentiable at ' 5 ' points.
71. (1): In the vicinity of $x=0$, we have

$$
x^{2} \sum_{r=0}^{\left[\frac{1}{|x|}\right]} r=x^{2}\left(1+2+3+\ldots+\left[\frac{1}{|x|}\right]\right)
$$

Use sandwich theorem
$P=x^{2}\left(1+2+3+\ldots+\left[\frac{1}{|x|}\right]\right)=\frac{x^{2}\left(1+\left[\frac{1}{|x|}\right]\right)}{2}\left[\frac{1}{|x|}\right]$
So, $\frac{1}{2}(1-|x|)<P \leq \frac{1}{2}(1+|x|)$
Then the limit is $1 / 2$.
72. (6) : $f(x)=\left\{\begin{array}{cc}0 & 0<x<1 \\ \sin \pi x & 1 \leq x<\sqrt{2} \\ 2 \sin \pi x & \sqrt{2} \leq x<\sqrt{3} \\ 3 \sin \pi x & \sqrt{3} \leq x<2 \\ 4 \sin \pi x & 2 \leq x<\sqrt{5} \text { etc. }\end{array}\right.$

The function is discontinuous at $x=\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots . \sqrt{K}$ where K is not a perfect square.
$\therefore \quad$ Points of discontinuity are 6 .
73. (3): Since $f(x)$ is continuous at $x=0$
$\therefore f(0)=\lim _{x \rightarrow 0} \frac{\log (1+x)^{1+x}-x}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{(1+x) \log (1+x)-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1+\log (1+x)-1}{2 x}=\frac{1}{2}$
$\therefore \quad 6 f(0)=3$
74. (8) : $f(x)=\left\{\begin{array}{cl}a x^{3}+b & , 0 \leq x \leq 1 \\ 2 \cos \pi x+\tan ^{-1} x & , 1<x \leq 2\end{array}\right.$

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
3 a x^{2} & , 0<x<1 \\
-2 \pi \sin \pi x+\frac{1}{1+x^{2}} & , \quad 1<x \leq 2
\end{array}\right.
$$

As the function is differentiable in [0,2]
\Rightarrow function is differentiable at $x=1$
$\therefore \quad f^{\prime}\left(1^{-}\right)=f^{\prime}\left(1^{+}\right) \Rightarrow 3 a=\frac{1}{2} \Rightarrow a=\frac{1}{6}$
Function will also be continuous at $x=1$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \Rightarrow a+b=-2+\frac{\pi}{4}$
$\therefore b=-2-\frac{1}{6}+\frac{\pi}{4}=\frac{\pi}{4}-\frac{13}{6} \Rightarrow k_{1}=4 \& k_{2}=12$
$\Rightarrow \quad k_{2}-k_{1}=8$

CLASS XII Series 6

ACE

 YOUR WAY
Differential Equations

Important Formulae

- An equation involving derivatives of the dependent variable with respect to independent variable (variables) is known as a differential equation.
- Order of a differential equation is the order of the highest order derivative occurring in the differential equation.
- Degree (when defined) of a differential equation is the highest power (positive integer only) of the highest order derivative in it.
- The solution which contains as many arbitrary constants as the order of the differential equation is called a general solution and the solution free from arbitrary constants is called particular solution.
- $y_{1}=y^{\prime}=\frac{d y}{d x}, y_{2}=y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}, y_{3}=y^{\prime \prime \prime}=\frac{d^{3} y}{d x^{3}}, \ldots$. .., $y_{n}=\frac{d^{n} y}{d x^{n}}$
- A differential equation is linear if it can be expressed as $a_{0} \frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots .+a_{n-1} \frac{d y}{d x}+a_{n} y=P_{n}$
Where a_{0}, a_{1}, a_{2}, \qquad . a^{n} and p_{n} are constants or functions of independent variable x.
- If the equation is $\frac{d y}{d x}=f(x)$, then $y=\int f(x) d x+C$.
- Variable Separable : If the equation is of the form $\frac{d y}{d x}=f(x) \cdot g(y)$, then $\int \frac{d y}{g(y)}=\int f(x) d x+C$.
- Reducible to Variable separable : If the equation is of the form $\frac{d y}{d x}=f(a x+b y+c)$, then put $a x+b y+c=z$.
- Homogeneous Equation : If the equation is of the form $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$, where $f(x, y), g(x, y)$ are homogeneous functions of the same degree in x and y, then put $y=v x$.
- Linear Equation : If the equation is of the form $\frac{d y}{d x}+P y=Q$, where P, Q are functions of x, then solution of differential equation is $y e^{\int P d x}=\int Q e^{\int P d x} d x+C$ where $e^{\int P d x}$ is the integrating factor (I.F.).

Or
If the equation is of the form $\frac{d x}{d y}+P x=Q$, where P, Q are functions of y, then $x e^{\int P d y}=\int Q e^{\int P d y} d y+C$ where $e^{\int P d y}$ is the integrating factor.

WORK IT OUT

VERY SHORT ANSWER TYPE

1. Find the differential equation corresponding to $y=A e^{x}+B e^{-x}$.
2. Solve: $\frac{d y}{d x}=\left(e^{x}+1\right) y$
3. Find the I.F of $\left(1-x^{2}\right) \frac{d y}{d x}+x y=a x$.
4. Find the order and degree of $y=p x+\sqrt{a^{2} p^{2}+b^{2}}$, where $p=\frac{d y}{d x}$.
5. Find the differential equation of all non-vertical lines in a plane.

SHORT ANSWER TYPE

6. Show that the function $y=A x+\frac{B}{x}$ is a solution of the differential equation, $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$
7. Find the particular solution of $y^{\prime}=y \cot 2 x, y\left(\frac{\pi}{4}\right)=2$
8. The slope of the tangent at a point $P(x, y)$ on a curve is $(-x / y)$. If the curve passes through the point $(3,-4)$, find the equation of the curve.
9. Solve : $\frac{d y}{d x}=-\frac{x+y \cos x}{1+\sin x}$
10. Show that $y=x^{2}+2 x+1$ is the solution of the initial value problem $\frac{d^{3} y}{d x^{3}}=0, y(0)=1, y^{\prime}(0)=2, y^{\prime \prime}(0)=2$.

LONG ANSWER TYPE - I

11. Form the differential equation corresponding to $(x-a)^{2}+(y-b)^{2}=r^{2}$ by eliminating a and b.
12. Solve : $\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d x}{d y}=1$.
13. Solve the following differential equations :
(i) $(x+2) \frac{d y}{d x}=x^{2}+4 x-9, x \neq-2$
(ii) $\frac{d y}{d x}=\sin ^{3} x \cos ^{2} x+x e^{x}$
14. Find the equation of the curve passing through origin if the slope of the tangant to the curve at any point (x, y) is equal to the square of the difference of the abscissa and ordinate of the point.
15. Solve $(x+y)^{2} \frac{d y}{d x}=a^{2}$
16. Form the differential equation of the family of circles in the first quadrant which touch the coordinates axes.
17. If the tangent at any point P of a curve meets the axis of X in T. Find the curve for which $O P=P T, O$ being the origin.
18. Find the particular solution of $(x+y) d y+(x-y) d x=0$, given that $y=1$ when $x=1$.
19. Solve: $\frac{d y}{d x}+y=\cos x-\sin x, y(0)=1$.
20. Experiments show that the rate of inversion of cane sugar in dilute solution is proportional to the concentration $y(t)$ of the unaltered sugar. Suppose that the concentration is $1 / 100$ at $t=0$ and is $1 / 300$ at $t=10$ hours. Find $y(t)$.

SOLUTIONS

1. We have, $y=A e^{x}+B e^{-x}$

Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=A e^{x}-B e^{-x}$
Differentiating again w.r.t. x, we get
$\frac{d^{2} y}{d x^{2}}=A e^{x}+B e^{-x}=y$ is the required differential equation.
2. We have, $\frac{d y}{d x}=\left(e^{x}+1\right) y \Rightarrow \frac{d y}{y}=\left(e^{x}+1\right) d x$

On Integrating both sides, we get $\int \frac{d y}{y}=\int\left(e^{x}+1\right) d x$ $\Rightarrow \log y=e^{x}+x+c$.
3. We have, $\left(1-x^{2}\right) \frac{d y}{d x}+x y=a x$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}+\frac{x}{1-x^{2}} y=\frac{a x}{1-x^{2}} \\
& \therefore \quad \text { I.F. }=e^{\int \frac{x}{1-x^{2}} d x}=e^{-\frac{1}{2} \int \frac{-2 x}{1-x^{2}} d x} \\
& \quad=e^{-\frac{1}{2} \log \left(1-x^{2}\right)}=e^{\log \left(1-x^{2}\right)^{-1 / 2}} \\
& \quad=\left(1-x^{2}\right)^{-1 / 2}=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

4. Given, $y-p x=\sqrt{a^{2} p^{2}+b^{2}}$
$\Rightarrow \quad(y-p x)^{2}=a^{2} p^{2}+b^{2}$
$\Rightarrow \quad\left(x^{2}-a^{2}\right) p^{2}-2 x y p+\left(y^{2}-b^{2}\right)=0$
$\Rightarrow\left(x^{2}-a^{2}\right)\left(\frac{d y}{d x}\right)^{2}-2 x y\left(\frac{d y}{d x}\right)+\left(y^{2}-b^{2}\right)=0$
Hence, order 1 and degree 2.
5. The equation of the family of non-vertical lines in plane is $a x+b y=1$, where $b \neq 0$ and $a \in R$.
Differentiating w.r.t. x, we get
$a+b \frac{d y}{d x}=0$
On differentiating again w.r.t. x, we get
$b \frac{d^{2} y}{d x^{2}}=0 \Rightarrow \frac{d^{2} y}{d x^{2}}=0$ is the required differential equation.
6. The given function is : $y=A x+\frac{B}{x}$

Differentiating w.r.t. x, we get $\frac{d y}{d x}=A-\frac{B}{x^{2}}$
Again differentiating w.r.t. x, we get

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=-B\left(-2 x^{-3}\right)=\frac{2 B}{x^{3}} \Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}=\frac{2 B}{x} . \tag{iii}
\end{equation*}
$$

Now, $x \frac{d y}{d x}-y=x\left(A-\frac{B}{x^{2}}\right)-\left(A x+\frac{B}{x}\right)$
[Using (i) and (ii)]
$\Rightarrow x \frac{d y}{d x}-y=A x-\frac{B}{x}-A x-\frac{B}{x}=-\frac{2 B}{x}$
Adding (iii) and (iv), we get

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=\frac{2 B}{x}-\frac{2 B}{x}=0
$$

Hence, $y=A x+\frac{B}{x}$ is a solution of above differential equation.
7. We have, $y^{\prime}=y \cot 2 x \Rightarrow \frac{d y}{d x}=y \cot 2 x$
$\Rightarrow \frac{d y}{y}=\cot 2 x d x$
Integrating both sides, we get
$\int \frac{d y}{y}=\int \cot 2 x d x$
$\Rightarrow \log |y|=\frac{1}{2} \log |\sin 2 x|+\log c$
$\Rightarrow \log |y|=\log |\sqrt{\sin 2 x}|+\log c$
$\Rightarrow \log |y|=\log |c \sqrt{\sin 2 x}| \Rightarrow y=c \sqrt{\sin 2 x}$
Given $y\left(\frac{\pi}{4}\right)=2$
$\Rightarrow 2=c \sqrt{\sin \frac{\pi}{2}} \Rightarrow c=2 \therefore y=2 \sqrt{\sin 2 x}$
8. Given : $\frac{d y}{d x}=-\frac{x}{y} \Rightarrow y d y+x d x=0$

Integrating both sides, we get
$\frac{y^{2}}{2}+\frac{x^{2}}{2}=c^{\prime} \Rightarrow y^{2}+x^{2}=2 c^{\prime}$
$\Rightarrow x^{2}+y^{2}=c$, where $c=2 c^{\prime}$.
Since it passes through $(3,-4)$
$\therefore(3)^{2}+(4)^{2}=c \Rightarrow c=25$.
Hence, the required equation of the curve is $x^{2}+y^{2}=25$.
9. We have, $\frac{d y}{d x}=-\frac{x+y \cos x}{1+\sin x}$
$\Rightarrow \frac{d y}{d x}+\frac{\cos x}{1+\sin x} y=-\frac{x}{1+\sin x}$
$\therefore \quad$ I.F. $=e^{\int \frac{\cos x}{1+\sin x} d x}=e^{\log (1+\sin x)}=(1+\sin x)$

$$
y(1+\sin x)=\int-x d x+c
$$

$$
\text { [Using : } y \text { (I.F.) }=\int Q(\text { I.F. }) d x+c \text {] }
$$

$\Rightarrow y(1+\sin x)=-\frac{x^{2}}{2}+c$
$\Rightarrow y=\frac{2 c-x^{2}}{2(1+\sin x)}$, which gives the required solution.
10. We have, $y=x^{2}+2 x+1$
$\Rightarrow \frac{d y}{d x}=2 x+2, \frac{d^{2} y}{d x^{2}}=2$ and $\frac{d^{3} y}{d x^{3}}=0$,
Also, $y(0)=0+0+1=1,\left(\frac{d y}{d x}\right)_{x=0}=2$
and $\left(\frac{d^{2} y}{d x^{2}}\right)_{x=0}=2$
$\Rightarrow y(0)=1, y^{\prime}(0)=2$ and $y^{\prime \prime}(0)=2$.
Hence, $y=x^{2}+2 x+1$ is the solution of the initial value problem.
11. We have, $(x-a)^{2}+(y-b)^{2}=r^{2}$

Differentiating both sides w.r.t. to x, we have
$\Rightarrow 2(x-a)+2(y-b) \frac{d y}{d x}=0$
$\Rightarrow(x-a)+(y-b) \frac{d y}{d x}=0$
Again differentiating both sides w.r.t to x, we get
$1+(y-b) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
Form (ii) and (iii), we get
$y-b=-\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$ and $x-a=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right] \frac{d y}{d x}}{\frac{d^{2} y}{d x^{2}}}$

Now, susbstituting these in the given equation, we obtain
$\left\{\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right] \frac{d y}{d x}}{\frac{d^{2} y}{d x^{2}}}\right\}^{2}+\left\{\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}\right\}^{2}=r^{2}$
$\Rightarrow\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$ is the required differential equation.
12. We have, $\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d x}{d y}=1$
$\Rightarrow \frac{d y}{d x}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}$
$\Rightarrow \frac{d y}{d x}+\frac{y}{\sqrt{x}}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}$
This is a linear differential equation of the form
$\frac{d y}{d x}+P y=Q$ where $P=\frac{1}{\sqrt{x}}$ and $Q=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}$.
$\therefore \quad$ I.F. $=e^{\int P d x}=e^{\int \frac{1}{\sqrt{x}} d x}=e^{2 \sqrt{x}}$
$\Rightarrow y e^{2 \sqrt{x}}=\int e^{2 \sqrt{x}} \cdot \frac{e^{-2 \sqrt{x}}}{\sqrt{x}} d x+c$
$\Rightarrow y e^{2 \sqrt{x}}=\int \frac{1}{\sqrt{x}} d x+c \Rightarrow y e^{2 \sqrt{x}}=2 \sqrt{x}+c$
$\Rightarrow y=(2 \sqrt{x}+c) e^{-2 \sqrt{x}}$, which gives the required solution.
13. (i) We have, $(x+2) \frac{d y}{d x}=x^{2}+4 x-9$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2}+4 x-9}{x+2}$
$[\because x \neq-2]$
$\Rightarrow d y=\left(\frac{x^{2}+4 x-9}{x+2}\right) d x$
Integrating both sides, we get
$\int d y=\int \frac{x^{2}+4 x-9}{x+2} d x \Rightarrow \int d y=\int\left(x+2-\frac{13}{x+2}\right) d x$
$\Rightarrow y=\frac{x^{2}}{2}+2 x-13 \log |x+2|+c$
(ii) We have, $\frac{d y}{d x}=\sin ^{3} x \cos ^{2} x+x e^{x}$
$\Rightarrow d y=\left(\sin ^{3} x \cos ^{2} x+x e^{x}\right) d x$
Integrating both sides, we get
$\int d y=\int\left(\sin ^{3} x \cos ^{2} x+x e^{x}\right) d x$
$\Rightarrow \int d y=\int \sin ^{3} x \cos ^{2} x d x+\int x e^{x} d x$
$\Rightarrow \int d y=\int \cos ^{2} x\left(1-\cos ^{2} x\right) \sin x d x+\int x e^{x} d x$
$\Rightarrow y=-\int t^{2}\left(1-t^{2}\right) d t+\left\{x e^{x}-\int e^{x} d x\right\}$, where $t=\cos x$
$\Rightarrow y=-\left\{\frac{t^{3}}{3}-\frac{t^{5}}{5}\right\}+\left(x e^{x}-e^{x}\right)+c$
$\Rightarrow y=-\frac{1}{3} \cos ^{3} x+\frac{1}{5} \cos ^{5} x+x e^{x}-e^{x}+c, \forall x \in R$
14. The slope of the tangent at any point (x, y) on the curve $y=f(x)$ is given by $\frac{d y}{d x}$.
Also, $\frac{d y}{d x}=(x-y)^{2}$ (Given)
$\therefore \quad$ Let $x-y=v \Rightarrow 1-\frac{d y}{d x}=\frac{d v}{d x}$. Substituting these values in (i), we get
$1-\frac{d v}{d x}=v^{2} \Rightarrow \frac{d v}{d x}=1-v^{2} \Rightarrow \frac{1}{1-v^{2}} d v=d x$
Integrating, we obtain
$\frac{1}{2} \log \left|\frac{1+v}{1-v}\right|=x+c \quad$ or $\quad \log \left|\frac{1+v}{1-v}\right|=2 x+2 c$
or, $\quad \log \left|\frac{1+x-y}{1-x+y}\right|=2 x+2 c$
It is given that the curve passes through the origin.
Therefore, $y=0$ when $x=0$. Putting $x=0, y=0$ in
(ii), we obtain $c=0$.

Putting $c=0$ in (ii), we obtain
$\log \left|\frac{1+x-y}{1-x+y}\right|=2 x$ or $\log \left|\frac{1+x-y}{1-x+y}\right|=e^{2 x}$
or, $(1+x-y)= \pm(1-x+y) e^{2 x}$, which is the equation of the curve.
15. Let $x+y=v$. Then,
$1+\frac{d y}{d x}=\frac{d v}{d x} \Rightarrow \frac{d y}{d x}=\frac{d v}{d x}-1$
On substituting in given equation, we get
$v^{2}\left(\frac{d v}{d x}-1\right)=a^{2} \Rightarrow v^{2} \frac{d v}{d x}=a^{2}+v^{2}$
$\Rightarrow v^{2} d v=\left(a^{2}+v^{2}\right) d x$
$\Rightarrow \frac{v^{2}}{v^{2}+a^{2}} d v=d x \quad$ [By separating the variables]
$\Rightarrow\left(1-\frac{a^{2}}{v^{2}+a^{2}}\right) d v=d x$
$\Rightarrow \int 1 \cdot d v-a^{2} \int \frac{1}{v^{2}+a^{2}} d v=\int d x+c$
[On integration]

CONCEPT FUNCTIONS

INVERSE TRIGONOMETRIC FUNCTIONS

Class XII

Domaln

$[-1,1]$
[-1, 1]
$y=\cos ^{-1} x$
$y=\tan ^{-1} x$
$y=\cot ^{-1} x$
$y=\operatorname{cosec}^{-1} x$
$R-(-1,1)$
$R-(-1,1)$

$$
\begin{equation*}
y=\sec ^{-1} x \tag{-1,1}
\end{equation*}
$$

Range
$[-\pi / 2, \pi / 2]$
$[0, \pi]$
$(-\pi / 2, \pi / 2)$
$(0, \pi)$
$[-\pi / 2, \pi / 2]-\{0\}$
$[0, \pi]-\{\pi / 2\}$

Graph

$\sin ^{-1} x+\cos ^{-1} x=\pi / 2$
$\tan ^{-1} x+\cot ^{-1} x=\pi / 2$
$\operatorname{cosec}^{-1} x+\sec ^{-1} x=\pi / 2$
Properties of
2 Inverse Trigonometric Functions

$$
\begin{aligned}
& \tan ^{-1} x-\tan ^{-1} y \\
& =\tan ^{-1}\left(\frac{x-y}{1+x y}\right), x y>-1 \\
& \tan ^{-1} x+\tan ^{-1} y \\
& =\tan ^{-1}\left(\frac{x+y}{1-x y}\right), x y<1
\end{aligned}
$$

$$
\begin{aligned}
2 \tan ^{-1} x & =\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right),-1<x<1 \\
& =\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right),|x| \leq 1=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), x \geq 0
\end{aligned}
$$

$\Rightarrow v-a \tan ^{-1}\left(\frac{v}{a}\right)=x+c$
Hence, $(x+y)-a \tan ^{-1}\left(\frac{x+y}{a}\right)=x+c$, is the
required solution.
16. Family of circles which touch the coordinates axes in first quadrant is: $(x-a)^{2}+(y-a)^{2}=a^{2}$
where a is the radius of the circles. Differentiating
(i) w.r.t. x,
$2(x-a)+2(y-a) \frac{d y}{d x}=0$
Putting $\frac{d y}{d x}=p$, we get
$(x-a)+(y-a) p=0$
or $x-a+p y-p a=0$
$\Rightarrow x+p y-a(1+p)=0$
$\therefore \quad a=\frac{x+p y}{1+p}$
Putting value of a in (i), we get
$\Rightarrow\left(x-\frac{x+p y}{1+p}\right)^{2}+\left(y-\frac{x+p y}{1+p}\right)^{2}=\left(\frac{x+p y}{1+p}\right)^{2}$
$\Rightarrow\left[\frac{x(1+p)-x-p y}{1+p}\right]^{2}+\left[\frac{y(1+p)-x-p y}{1+p}\right]^{2}$

$$
=\left(\frac{x+p y}{1+p}\right)^{2}
$$

or, $\left[\frac{(x-y) p}{1+p}\right]^{2}+\left[\frac{(y-x)}{1+p}\right]^{2}=\left[\frac{x+p y}{1+p}\right]^{2}$
Multiplying both sides by $(1+p)^{2}$, we get

$$
(x-y)^{2} p^{2}+(x-y)^{2}=(x+p y)^{2}
$$

or, $(x-y)^{2}\left(1+p^{2}\right)=(x+p y)^{2}$
$\Rightarrow(x-y)^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\left[x+y \frac{d y}{d x}\right]^{2}$
This is the required differential equation.
17. Let $y=f(x)$ be given curve and let $P(x, y)$ be a point on it. The equation of the tangent at P is
$Y-y=\frac{d y}{d x}(X-x)$
This meets X-axis at T.
So, the x-coordinate of T is obtained by putting $Y=0$ in (i).
Putting $Y=0$ in (i), we get

$$
0-y=\frac{d y}{d x}(X-x)
$$

$\Rightarrow X=x-y \frac{d x}{d y}$
Thus, the coordinates of T are $\left(x-y \frac{d x}{d y}, 0\right)$
$\therefore \quad P T=\sqrt{\left\{x-\left(x-y \frac{d x}{d y}\right)\right\}^{2}+(y-0)^{2}}$

$$
=\sqrt{y^{2}\left(\frac{d x}{d y}\right)^{2}+y^{2}} \text { [Given] }
$$

Now, $P T=O P$ (Given)
$\Rightarrow \sqrt{y^{2}+y^{2}\left(\frac{d x}{d y}\right)^{2}}=\sqrt{x^{2}+y^{2}}$
$\Rightarrow y^{2}+y^{2}\left(\frac{d x}{d y}\right)^{2}=x^{2}+y^{2} \Rightarrow y^{2}\left(\frac{d x}{d y}\right)^{2}=x^{2}$
$\Rightarrow y \frac{d x}{d y}= \pm x \Rightarrow \frac{d x}{x}= \pm \frac{d y}{y}$
$\Rightarrow \log x= \pm \log y+\log c$
$\Rightarrow \log x=\log (c y)$ or, $\log x=\log \left(\frac{c}{y}\right)$
$\Rightarrow \quad x=c y$ or, $x=\frac{c}{y}$, are the equations of curve.
18. We have, $(x+y) d y+(x-y) d x=0$
$\Rightarrow(x+y) d y=-(x-y) d x$
$\Rightarrow \frac{d y}{d x}=\frac{y-x}{x+y}$
Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
From (i) and (ii), we get
$v+x \frac{d v}{d x}=\frac{(v-1) x}{(v+1) x} \Rightarrow x \frac{d v}{d x}=\frac{v-1}{v+1}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{v-1-v^{2}-v}{v+1} \Rightarrow \frac{v+1}{1+v^{2}} d v=-\frac{d x}{x}$
$\Rightarrow \int \frac{1}{1+v^{2}} d v+\int \frac{v}{1+v^{2}} d v=-\int \frac{d x}{x}$
$\Rightarrow \tan ^{-1} v+\frac{1}{2} \int \frac{2 v}{1+v^{2}} d v=-\log |x|+c$
$\Rightarrow \tan ^{-1} v+\frac{1}{2} \log \left|1+v^{2}\right|=-\log |x|+c$
$\Rightarrow \tan ^{-1} \frac{y}{x}+\frac{1}{2} \log \left|1+\frac{y^{2}}{x^{2}}\right|=-\log |x|+c$
Given $y=1$ when $x=1$. Putting in equation (iii), we get

Concerned about your performance in Class XII Boards?

Well, fear no more, help is at hand.....
To excel, studying in right direction is more important than studying hard. Which is why we created the Excel Series. These books - for Physics, Chemistry, Biology \& Mathematics - have been put together totally keeping in mind the prescribed syllabus and the pattern of CBSE's Board examinations, so that students prepare and practice with just the right study material to excel in board exams.

Did you know nearly all questions in CBSE's 2017 Board Examination were a part of our Excel books? That too fully solved!

HIGHLIGHTS:

- Comprehensive theory strictly based on NCERT, complemented with illustrations, activities and solutions of NCERT questions
- Practice questions \& Model Test Papers for Board Exams
- Value based questions
- Previous years' CBSE Board Examination Papers (Solved)
- CBSE Board Papers 2017 Included

Scan now with your smartphone or tablet*

Visit

Available at all leading book shops throughout the country. For more information or for help in placing your order: Call 0124-6601200 or email: info@mtg.in
*Application to read QR codes required
$\tan ^{-1} 1+\frac{1}{2} \log \left|1+\frac{1}{1}\right|=-\log |1|+c$
$c=\frac{\pi}{4}+\frac{1}{2} \log 2$
Putting $c=\frac{\pi}{4}+\log \sqrt{2}$ in equation (iii), we get
$\tan ^{-1} \frac{y}{x}+\frac{1}{2} \log \left[1+\frac{y^{2}}{x^{2}}\right]+\log |x|=\frac{\pi}{4}+\log \sqrt{2}$
19. The given differential equation is
$\frac{d y}{d x}+y=\cos x-\sin x$
This is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$, where $P=1$ and $Q=\cos x-\sin x$.
$\therefore \quad$ I.F. $=e^{\int P d x}=e^{\int 1 d x}=e^{x}$
Solution of linear differential equation is $y \cdot($ I.F. $)=\int Q($ I.F $) d x+c$
$e^{x} \frac{d y}{d x}+y e^{x}=e^{x}(\cos x-\sin x)$
$y e^{x}=\int e^{x}(\cos x-\sin x) d x+c$
$\Rightarrow y e^{x}=\int e^{x} \cos x d x-\int e^{x} \sin x d x+c$
$\Rightarrow y e^{x}=e^{x} \cos x-\int-\sin x e^{x} d x-\int e^{x} \sin x+c$
$\Rightarrow y e^{x}=e^{x} \cos x+\int e^{x} \sin x d x-\int e^{x} \sin x d x+c$
$\Rightarrow y e^{x}=e^{x} \cos x+c$,
Now, $y(0)=1 \Rightarrow y=\cos 0+c \Rightarrow c=0$
$\therefore \quad y e^{x}=e^{x} \cos x$ is the required equation.
20. Given: $\frac{d y}{d t} \propto y \Rightarrow \frac{d y}{d t}=k y$
where k is constant of proportionality.
$\Rightarrow \frac{d y}{y}=k d t$
Integrating both sides, we get
$\int \frac{d y}{y}=k \int d t \Rightarrow \log y=k t+c$
Initially, when $t=0, y=\frac{1}{100}$
$\therefore \log \frac{1}{100}=0+c \Rightarrow c=\log (100)^{-1}=-\log 100$
\therefore From (i), we have,
$\log y=k t-\log 100$
Now it is given when $t=10$ hours, $y=\frac{1}{300}$
$\therefore \quad \log \frac{1}{300}=10 k-\log 100$
$\Rightarrow-\log 300=10 k-\log 100$
$\Rightarrow 10 k=\log 100-\log 300$
$\Rightarrow 10 k=\log \frac{100}{300}=\log \frac{1}{3}=-\log 3 \therefore k=-\frac{\log 3}{10}$
Putting these values in (ii), we get
$\log y=-\frac{\log 3}{10} t-\log 100 \Rightarrow \log 100+\log y=-\frac{\log 3}{10} t$
$\Rightarrow \log 100 y=-\frac{\log 3}{10} t \Rightarrow 100 y=e^{-\frac{\log 3}{10} t}$
$\Rightarrow y=\frac{1}{100} e^{-\frac{\log 3}{10} t} \Rightarrow y=0.01 e^{-\frac{\log 3}{10} t}$
Hence, concentration at time t is given by $y=0.01 e^{-[\log 3 / 10] t}$

AVAILABLE BOUND VOLUMES

MPP-6 mowty

This specially designed column enables students to self analyse their extent of understanding of specified chapters. Give yourself four marks for correct answer and deduct one mark for wrong answer. Self check table given at the end will help you to check your readiness.

Indefinite Integration

Time Taken : 60 Min.

Only One Option Correct Type

1. If $I=\int(7 x+4) \sqrt{5-4 x-2 x^{2}} d x$, then I equals
(a) $\frac{7}{2} x \sqrt{5-4 x-2 x^{2}}+\frac{21 \sqrt{2}}{4} \sin ^{-1}\left(\frac{\sqrt{2}(x+1)}{\sqrt{7}}\right)+c$
(b) $(7 x+3) \sqrt{5-4 x-2 x^{2}}+\frac{21 \sqrt{2}}{4} \sin ^{-1}\left(\frac{\sqrt{2}(x+1)}{\sqrt{7}}\right)+c$
(c) $\frac{1}{6}\left(14 x^{2}-3 x-4\right) \sqrt{5-4 x-2 x^{2}}+\frac{21 \sqrt{2}}{4}$

$$
\sin ^{-1}(\sqrt{2}(x+1))+c
$$

(d) None of these
2. If $I=\int(x+1) \sqrt{\frac{x+2}{x-2}} d x$, then I equals
(a) $\frac{1}{2}(x+6) \sqrt{x^{2}-4}+2 \log \left|x+\sqrt{x^{2}-4}\right|+c$
(b) $\frac{1}{2}(x+6) \sqrt{x^{2}-4}+4 \log \left|x+\sqrt{x^{2}-4}\right|+c$
(c) $\frac{1}{2}(x+6) \sqrt{x^{2}-4}+6 \log \left|x+\sqrt{x^{2}-4}\right|+c$
(d) None of these
3. $\int \frac{\left(2 x^{12}+5 x^{9}\right)}{\left(x^{5}+x^{3}+1\right)^{3}} d x$ is equal to
(a) $\frac{x^{2}+2 x}{\left(x^{5}+x^{3}+1\right)^{2}}+c$
(b) $\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+c$
(c) $\ln \left|x^{5}+x^{3}+1\right|+\sqrt{\left(2 x^{7}+5 x^{4}\right)}+c$
(d) None of these
4. If $\int \frac{\sin x}{\sin 4 x} d x=A \log \left|\frac{1+\sin x}{1+\sin x}\right|+B \log$

$$
\left|\frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x}\right|+c \text { then }
$$

(a) $A=\frac{1}{8}, B=\frac{1}{4 \sqrt{2}}$
(b) $A=-\frac{1}{8}, B=-\frac{1}{4 \sqrt{2}}$
(c) $A=-\frac{1}{8}, B=\frac{1}{4 \sqrt{2}}$
(d) $A=\frac{1}{8}, B=-\frac{1}{4 \sqrt{2}}$
5. Let $x^{2}+1 \neq n \pi, n \in N$, then
$\int x \sqrt{\frac{2 \sin \left(x^{2}+1\right)-\sin \left\{2\left(x^{2}+1\right)\right\}}{2 \sin \left(x^{2}+1\right)+\sin \left\{2\left(x^{2}+1\right)\right\}}} d x$ is
(a) $\ln \left|\frac{1}{2} \sec \left(x^{2}+1\right)\right|+c$
(b) $\ln \left|\sec \left\{\frac{1}{2}\left(x^{2}+1\right)\right\}\right|+c$
(c) $\frac{1}{2} \ln \left|\sec \left(x^{2}+1\right)\right|+c$
(d) $\ln \left|\sec \left(x^{2}+1\right)\right|+c$
6. If $\int \frac{x^{3}}{4+x^{16}} d x=\frac{A}{4096} \tan ^{-1} \frac{z}{\sqrt{2}}-\frac{1}{64} \log \left|\frac{u-\sqrt{2}}{u+\sqrt{2}}\right|+c$, where $u=y+1 / y$ and $z=y-1 / y, y=x^{4} / \sqrt{2}$ then A is
(a) 128
(b) 32
(c) 64
(d) 512

One or More Than One Option(s) Correct Type

7. A primitive of $\sin 6 x$ is
(a) $\frac{1}{3}\left(\sin ^{6} x-\sin ^{3} x\right)+c$
$\begin{array}{ll}\text { (b) }-\frac{1}{3} \cos ^{2} 3 x+c & \text { (c) } \frac{1}{3} \sin ^{2} 3 x+c\end{array}$
(d) $\frac{1}{3} \sin \left(3 x+\frac{\pi}{7}\right) \sin \left(3 x-\frac{\pi}{7}\right)+c$
8. $\int \frac{x^{8}+4}{x^{4}-2 x^{2}+2} d x=$
(a) $\frac{x^{5}}{5}+\frac{2 x^{3}}{3}+2 x+c$
(b) $\frac{x^{5}}{5}+\frac{x^{3}}{3}+2 x^{2}+2 x+c$
(c) $3 x^{5}+10 x^{3}+45 x+c$
(d) $4 x^{3}+5 x^{2}+2 x+c$
9. If $\int \tan ^{4} x d x=K \tan ^{3} x+L \tan x+f(x)$, then
(a) $K=1 / 3$
(b) $L=-1$
(c) $f(x)=x+C$
(d) $K=2 / 3$
10. If $\int f(x) \sin x \cos x d x=\frac{1}{2\left(b^{2}-a^{2}\right)} \log (f(x))+c$, then $\int f(x) d x$ equals
(a) $\frac{1}{a b} \tan ^{-1}\left(\frac{a \tan x}{b}\right)$
(b) $a b \tan ^{-1}\left(\frac{a \tan x}{b}\right)$
(c) $\frac{1}{a b} \tan ^{-1}\left(\frac{b \tan x}{a}\right)$
(d) $\frac{1}{a b} \tan ^{-1}\left(\tan \left(\frac{b x}{a}\right)\right)$
11. If the primitive of $\sin (\ln x)$ is $f(x)\{\sin g(x)-\cos h(x)\}$ $+c$ (c being the constant of integration), then
(a) $\lim _{x \rightarrow 2} f(x)=1$
(b) $\lim _{x \rightarrow 1} \frac{g(x)}{h(x)}=1$
(c) $g\left(e^{3}\right)=3$
(d) $h\left(e^{5}\right)=5$
12. $\int \frac{d x}{e^{x} \sqrt{2 e^{x}-1}}=$
(a) $2 \sec ^{-1} \sqrt{2 e^{x}+c}$
(b) $-4 \tan ^{-1} \frac{1}{\sqrt{2 e^{x}+1}}+c$
(c) $2 \sec ^{-1}\left(\sqrt{2} e^{x}\right)+c$
(d) $2 \tan ^{-1} \sqrt{2 e^{x}-1}+c$
13. If $\int \frac{x^{4}+1}{x^{6}+1} d x=\tan ^{-1} f(x)-\frac{2}{3} \tan ^{-1} g(x)+c$, then
(a) both $f(x)$ and $g(x)$ are odd functions
(b) $f(x)$ is monotonic function
(c) $f(x)=g(x)$ has no real roots
(d) $\int \frac{f(x)}{g(x)} d x=-\frac{1}{x}+\frac{3}{x^{3}}+c$

Comprehension Type

Repeated application of integration by parts gives us the reduction formula if the integrand is dependent of $n, n \in N$.
14. If $I_{m-2, n+2}=\int \sin ^{m-2} x \cos ^{n+2} x d x$ and $I_{m, n}=-\frac{\sin ^{m-1} x \cos ^{n+1}}{(n+1)}+f(m, n) I_{m-2, n+2}$ then $f(2,3)$ is equal to
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) $\frac{1}{5}$
15. If $I_{m}, p=\int x^{m} \cdot\left(a+b x^{n}\right)^{p} d x$ and $I_{m}, p=\frac{x^{m+1}\left(a+b x^{n}\right)^{p}}{(m+1)}$ $-f(m, n, p, b) I_{m+n, p-1}$, then the value of $f(1,2,3,4)$ is equal to
(a) 8
(b) 10
(c) 12
(d) None of these

Matrix Match Type

16. Match the following :

Column I		Column II	
P.	$\int \frac{e^{x}\left(2-x^{2}\right)}{(1-x) \sqrt{1-x^{2}}} d x$	1.	$\frac{e^{x}}{x+2}+c$
Q.	$\int \frac{e^{x}(x+1)}{(x+2)^{2}} d x$	2.	$e^{x} \sqrt{\frac{1+x}{1-x}}+c$
	$\int \frac{x+1}{x\left(1+x e^{x}\right)^{2}} d x$	3.	$(x-2) u-\log \frac{u-1}{u+1}$
R.			$+c, u=\sqrt{e^{x}+1}$
		4.	$\log \left\|\frac{x e^{x}}{1+x e^{x}}\right\|+\frac{1}{1+x e^{x}}+c$

17. Let $f(x)=\int x^{\sin x}(1+x \cos x . \ln x+\sin x) d x$ and $f\left(\frac{\pi}{2}\right)=\frac{\pi^{2}}{4}$. Then the value of $|\cos f(\pi)|$ is
18. If $\int \frac{x d x}{\sqrt{\left(7 x-10-x^{2}\right)^{3}}}=\frac{\lambda \cdot(7 x-20)}{9 \sqrt{7 x-10-x^{2}}}+c$,
then the value of λ is
19. If $\int x^{2} \cdot e^{-2 x} d x=e^{-2 x}\left(a x^{2}+b x+c\right)+d$, then the value of $|a / b c|$ is
20. If $\int\left[\left(\frac{x}{e}\right)^{x}+\left(\frac{e}{x}\right)^{x}\right] \ln x d x=A\left(\frac{x}{e}\right)^{x}+B\left(\frac{e}{x}\right)^{x}+C$, then the value of $A+B$ is

Keys are published in this issue. Search now! :)

SELFCHECK
 No. of questions attempted

 No. of questions correct

 Check your score! If your score is
 > 90\% EXCELLENT WORK ! You are well prepared to take the challenge of final exam.
 Marks scored in percentage
 \qquad
 < 60\% NOT SATISFACTORY! Revise thoroughly and strengthen your concepts.

MATIS MUSING

Maths Musing was started in January 2003 issue of Mathematics Today. The aim of Maths Musing is to augment the chances of bright students seeking admission into IITs with additional study material.
During the last 10 years there have been several changes in JEE pattern. To suit these changes Maths Musing also adopted the new pattern by changing the style of problems. Some of the Maths Musing problems have been adapted in JEE benefitting thousand of our readers. It is heartening that we receive solutions of Maths Musing problems from all over India.
Maths Musing has been receiving tremendous response from candidates preparing for JEE and teachers coaching them. We do hope that students will continue to use Maths Musing to boost up their ranks in JEE Main and Advanced.

PROBLEM
 Set 178

JEE MAIN

1. The equation $(\cos p-1) x^{2}+(\cos p) x+\sin p=0$ in the variable x has real roots. Then p can take any value in the interval
(a) $(0,2 \pi)$
(b) $(-\pi, 0)$
(c) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(d) $(0, \pi)$
2. The bisectors of $\triangle A B C$ meets its circumcircle at the points D, E, F respectively, then $\frac{\text { Area of } \triangle D E F}{\text { Area of } \triangle A B C}=$
(a) $\frac{R}{2 r}$
(b) $\frac{r}{2 R}$
(c) $\frac{2 r}{R}$
(d) $\frac{R}{r}$
3. $\sin \frac{\pi}{3}+\frac{1}{2} \sin \frac{2 \pi}{3}+\frac{1}{3} \sin \frac{3 \pi}{3}+\ldots \ldots . . . \infty=$
(a) 0
(b) $\pi / 2$
(c) $\pi / 4$
(d) $\pi / 3$
4. The curve described parametrically by $x=t^{2}+t+1$, and $y=t^{2}-t+1$ represents
(a) a pair of straight lines
(b) an ellipse
(c) a parabola
(d) a hyperbola
5. The number of integers greater than 6,000 that can be formed, using the digits $3,5,6,7$ and 8 , without repetition, is
(a) 216
(b) 192
(c) 58
(d) 46

JEE ADVANCED

6. Let $f:[0,2] \rightarrow R$ be a function which is continuous on $[0,2]$ and is differentiable on $(0,2)$ with $f(0)=1$.
Let $F(x)=\int_{0}^{x^{2}} f(\sqrt{t}) d t$ for $x \in[0,2]$. If $F^{\prime}(x)=f^{\prime}(x)$ for all $x \in(0,2)$ then $F(2)$ equals
(a) $e^{2}-1$
(b) $e^{4}-1$
(c) $e-1$
(d) e^{4}

COMPREHENSION

The graph of a certain function ' f ' contains the point $(0,2)$ and has the property that for each number t the tangent line to $y=f(x)$ at $(t, f(t))$ intersects the x-axis at $t+2$.
7. The value of $\lim _{x \rightarrow \infty} f(x)$ is
(a) 1
(b) -1
(c) 0
(d) ∞
8. Equation of normal at $(0,2)$ to the curve is
(a) $x-2 y+4=0$
(b) $x+3 y-6=0$
(c) $x-y+2=0$
(d) None of these

NTEGER TYPE

9. A curve passing through the point $(1,1)$ has the property that the perpendicular distance of the origin from normal at any point ' P ' of the curve is equal to the distance of P from the x-axis is a circle with radius

MATRIX MATCH
10. Match the following ([.] denotes the greatest integer function)

List-I		List-II	
P.	$\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}=$	1.	does not exist
Q.	$\lim _{x \rightarrow 0}=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}=$	2.	$1 / 2$
R.	$4 \lim _{x \rightarrow \frac{3}{2}}(x-[x])=$ S.	3.	$1 / 6$
$\lim _{x \rightarrow 0}[x]\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$	4.	3	

	P	Q	R	S
(a) 4	3	2	1	
(b) 2	1	4	3	
(c) 4	3	1	2	
(d) 1	4	2	3	

Trigonometric Identities

Trigonometric Identities

1. If $A+B+C=\pi$, then

- $\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C$
- $\cos 2 A+\cos 2 B+\cos 2 C=-1-4 \cos A \cos B \cos C$
- $\tan 2 A+\tan 2 B+\tan 2 C=\tan 2 A \tan 2 B \tan 2 C$
- $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C=1-2 \cos A \cos B \cos C$
- $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2+2 \cos A \cos B \cos C$
- $\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$

2. If $A+B+C=\pi / 2$, then

- $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=1-2 \sin A \sin B \sin C$
- $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C=2+2 \sin A \sin B \sin C$

Values of Trigonometric Ratios of Some Angles

1. $\sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)=\frac{\sqrt{3}-1}{2 \sqrt{2}}=\cos 75^{\circ}$
2. $\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right)=\frac{\sqrt{3}+1}{2 \sqrt{2}}=\sin 75^{\circ}$
3. $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)=2-\sqrt{3}=\cot 75^{\circ}$
4. $\cot 15^{\circ}=\cot \left(45^{\circ}-30^{\circ}\right)=2+\sqrt{3}=\tan 75^{\circ}$
5. $\tan 22 \frac{1}{2}^{\circ}=\tan \left(\frac{45}{2}\right)^{\circ}=\sqrt{2}-1=\cot 67 \frac{1}{2}^{\circ}$
6. $\cot 22 \frac{1}{2}^{\circ}=\cot \left(\frac{45}{2}\right)^{\circ}=\sqrt{2}+1=\tan 67 \frac{1}{2} \circ$
7. $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}=\cos 72^{\circ}$
8. $\cos 18^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}=\sin 72^{\circ}$
9. $\tan 18^{\circ}=\frac{\sqrt{25-10 \sqrt{5}}}{5}$
10. $\cos 36^{\circ}=\sin 54^{\circ}=\frac{\sqrt{5}+1}{4}$
11. $\sin 36^{\circ}=\cos 54^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4}$
12. $\tan 36^{\circ}=\frac{\sin 36^{\circ}}{\cos 36^{\circ}}=\sqrt{5-2 \sqrt{5}}$
13. $\sin 72^{\circ} \cos 54^{\circ}=\sin 36^{\circ} \cos 18^{\circ}=\frac{\sqrt{5}}{4}$
14. $\cos 36^{\circ} \cos 72^{\circ}=\sin 54^{\circ} \sin 18^{\circ}=\frac{1}{4}$
15. $\cos 36^{\circ}-\cos 72^{\circ}=\sin 54^{\circ}-\sin 18^{\circ}=\frac{1}{2}$

Important Series

1. $\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$
2. $\tan 2 x \tan (x+\alpha) \tan (x-\alpha)$

$$
=\tan 2 x-\tan (x+\alpha)-\tan (x-\alpha)
$$

3. $4 \sin x \sin \left(60^{\circ}-x\right) \sin \left(60^{\circ}+x\right)=\sin 3 x$
4. $4 \cos x \cos \left(60^{\circ}-x\right) \cos \left(60^{\circ}+x\right)=\cos 3 x$
5. $\tan x \tan \left(60^{\circ}-x\right) \tan \left(60^{\circ}+x\right)=\tan 3 x$
6. $\cot x \cot \left(60^{\circ}+x\right) \cot \left(120^{\circ}+x\right)=-\frac{1}{\tan 3 x}$
7. $\cos \alpha \cos 2 \alpha \cos 2^{2} \alpha \ldots . \cos 2^{n-1} \alpha$

$$
=\left\{\begin{array}{ccc}
\frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha} & \text { if } & \alpha \neq n \pi \\
1 & \text { if } & \alpha=2 k \pi \\
-1 & \text { if } & \alpha=(2 k+1) \pi
\end{array}\right\}
$$

8. $\cos \alpha \cos 2 \alpha \cos 2^{2} \alpha \ldots . . \cos 2^{n-1} \alpha$

$$
=\left\{\begin{array}{ccc}
\frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha}, & \text { if } & \alpha \neq n \pi \\
\frac{1}{2^{n}}, & \text { if } & \alpha=\frac{\pi}{2^{n}+1}, n \in I \\
\frac{-1}{2^{n}}, & \text { if } & \alpha=\frac{\pi}{2^{n}-1}, n \in I
\end{array}\right\}
$$

Summation of Series

1. $\sum_{r=0}^{n-1} \sin (\alpha+r \beta)=\sin \alpha+(\sin \alpha+\beta)+\sin (\alpha+2 \beta)+$ $\ldots .+\sin (\alpha+(n-1) \beta)$

$$
\begin{equation*}
=\frac{\sin \left(\alpha+\left(\frac{n-1}{2}\right) \beta\right) \sin \left(\frac{n \beta}{2}\right)}{\sin (\beta / 2)} \tag{}
\end{equation*}
$$

If $\beta=\alpha$ then ${ }^{*}$) reduces to
$\sin \alpha+\sin 2 \alpha+\sin 3 \alpha+\ldots+\sin (n \alpha)$

$$
=\frac{\sin \left(\frac{n+1}{2}\right) \alpha \sin \left(\frac{n \alpha}{2}\right)}{\sin (\alpha / 2)}
$$

2. $\sum_{r=0}^{n-1} \cos (\alpha+r \beta)=\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+$

$$
\ldots+\cos (\alpha+(n-1) \beta)
$$

$$
\begin{equation*}
=\cos \left(\alpha+\frac{(n-1) \beta}{2}\right) \sin \left(\frac{n \beta}{2}\right) \tag{}
\end{equation*}
$$

$$
\sin (\beta / 2)
$$

If $\beta=\alpha$ then (${ }^{* *}$) reduces
$\cos \alpha+\cos 2 \alpha+\cos 3 \alpha+\ldots+\cos (n \alpha)$

$$
=\frac{\cos \left(\frac{n+1}{2}\right) \alpha \cdot \sin \left(\frac{n \alpha}{2}\right)}{\sin (\alpha / 2)}
$$

Properties of Inverse Trigonometric Functions

1. $\cdot \sin ^{-1}(-x)=-\sin ^{-1}(x) \forall x \in[-1,1]$

- $\tan ^{-1}(-x)=-\tan ^{-1}(x) \forall x \in R$
- $\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1}(x) \forall x \in R-(-1,1)$
- $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x) \forall x \in[-1,1]$
- $\cot ^{-1}(-x)=\pi-\cot ^{-1}(x) \forall x \in(-\infty, \infty)$
- $\sec ^{-1}(-x)=\pi-\sec ^{-1}(x) \forall x \in R-(-1,1)$

2. $\cdot \sin ^{-1}\left(\frac{1}{x}\right)=\operatorname{cosec}^{-1} x \forall x \in R-(-1,1)$

- $\cos ^{-1}\left(\frac{1}{x}\right)=\sec ^{-1} x \forall x \in R-(-1,1)$
- $\tan ^{-1}\left(\frac{1}{x}\right)=\left\{\begin{array}{c}\cot ^{-1} x, x>0 \\ -\pi+\cot ^{-1} x, x<0\end{array}\right.$

3. $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} \forall x \in[-1,1]$

- $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2} \forall x \in R-(-1,1)$
- $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} \forall x \in(-\infty, \infty)$

4. $\tan ^{-1} x+\tan ^{-1} y$

$$
=\left\{\begin{array}{clc}
\tan ^{-1} \frac{x+y}{1-x y} & \text { if } & x y<1 x>0, y>0 \\
\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) & \text { if } & x>0, y>0, x y>1 \\
-\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) & \text { if } & x<0, y<0, x y>1
\end{array}\right.
$$

5. $\tan ^{-1} x-\tan ^{-1} y$

$$
=\left\{\begin{array}{ccc}
\tan ^{-1} \frac{x-y}{1+x y} & \text { if } & x y>-1 \\
-\pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right) & \text { if } & x<0, y>0, x y<-1 \\
\pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right) & \text { if } & x>0, y<0, x y<-1
\end{array}\right.
$$

6. $\sin ^{-1} x \pm \sin ^{-1} y$
$=\left\{\begin{array}{l}\sin ^{-1}\left[x \sqrt{1-y^{2}} \pm y \sqrt{1-x^{2}}\right] \forall x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1 \\ \pi-\sin ^{-1} x \sqrt{1-y^{2}} \pm y \sqrt{1-x^{2}} \forall x \geq 0, y \geq 0, x^{2}+y^{2}>1\end{array}\right.$
7. $\cdot \cos ^{-1} x \pm \cos ^{-1} y$
$=\left\{\begin{array}{c}\cos ^{-1}\left[x y \mp \sqrt{1-x^{2}} \sqrt{1-y^{2}}\right] \forall x, y \geq 0, x^{2}+y^{2} \leq 1 \\ \pi-\cos ^{-1}\left[x y \mp \sqrt{1-x^{2}} \sqrt{1-y^{2}}\right] \forall x, y \geq 0, x^{2}+y^{2}>1\end{array}\right.$

- $\cos ^{-1} x-\cos ^{-1} y$
$=\left\{\begin{array}{l}\cos ^{-1}\left(x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) \forall x, y \geq 0, y>x \\ -\cos ^{-1}\left(x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right] \forall x, y \geq 0, y<x\end{array}\right.$
$\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\right.$, if $|x| \leq 1$

8. $2 \tan ^{-1} x=\left\{\begin{array}{l}\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right), \text { if }|x|<1 \\ \pi+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right), \forall x>1 \\ \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \forall x \in[0,1] \\ -\pi+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \text { if } x \in(-\infty,-1)\end{array}\right.$
9. $\cdot \sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$

$$
=\left\{\begin{array}{ccc}
2 \sin ^{-1} x, & \text { if } & |x| \leq \frac{1}{\sqrt{2}} \\
\pi-2 \sin ^{-1} x, & \text { if } & \frac{1}{\sqrt{2}} \leq x \leq 1 \\
-\pi-2 \sin ^{-1} x, & \text { if } & -1 \leq x \leq-\frac{1}{\sqrt{2}}
\end{array}\right.
$$

- $\cos ^{-1}\left(2 x^{2}-1\right)=\left\{\begin{array}{cc}2 \cos ^{-1} x, & \text { if } x \in[0,1] \\ 2 \pi-2 \cos ^{-1} x, & \text { if } x \in[-1,0]\end{array}\right.$
- $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\left\{\begin{array}{c}2 \tan ^{-1} x,|x| \leq 1 \\ \pi-2 \tan ^{-1} x, x>1 \\ -\pi-2 \tan ^{-1} x, x<-1\end{array}\right.$
- $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)= \begin{cases}2 \tan ^{-1} x, & \forall x \in[0, \infty) \\ -2 \tan ^{-1} x, & \forall x \in(-\infty, 0]\end{cases}$
- $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\left\{\begin{array}{l}2 \tan ^{-1} x, \forall|x| \leq 1 \\ \pi-2 \tan ^{-1} x, \forall x \in(-\infty,-1) \\ -\pi+2 \tan ^{-1} x, \forall x \in(1, \infty)\end{array}\right.$

10. $\cot ^{-1} x=\left\{\begin{array}{c}\tan ^{-1}\left(\frac{1}{x}\right), \text { if } x>0 \text { i.e. } \cot ^{-1} x \in\left[0, \frac{\pi}{2}\right) \\ \pi+\tan ^{-1}\left(\frac{1}{x}\right), \text { if } x<0 \text { i.e. } \cot ^{-1} x \in\left(\frac{\pi}{2}, \pi\right)\end{array}\right.$
$3 \sin ^{-1} x, \forall|x| \leq \frac{1}{2}$
11. $\cdot \sin ^{-1}\left(3 x-4 x^{3}\right)=\left\{\pi-3 \sin ^{-1} x, \forall x \in\left(\frac{1}{2}, 1\right]\right.$ $-\pi-3 \sin ^{-1} x, \forall x \in\left[-1,-\frac{1}{2}\right)$

- $\cos ^{-1}\left(4 x^{3}-3 x\right)=\left\{\begin{array}{l}-2 \pi+3 \cos ^{-1} x, \forall x \in\left[-1,-\frac{1}{2}\right] \\ 2 \pi-3 \cos ^{-1} x, \forall|x| \leq \frac{1}{2} \\ 3 \cos ^{-1} x, \forall x \in\left[\frac{1}{2}, 1\right]\end{array}\right.$
- $\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)=\left\{\begin{array}{c}\pi+3 \tan ^{-1} x, \forall x<\frac{-1}{\sqrt{3}} \\ 3 \tan ^{-1} x, \forall|x|<\frac{1}{\sqrt{3}} \\ -\pi+3 \tan ^{-1} x, \forall x \in\left(\frac{1}{\sqrt{3}}, \infty\right)\end{array}\right.$

12. $\cdot \tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z$

$$
=\tan ^{-1}\left(\frac{x+y+z-x y z}{1-x y-y z-z x}\right), x, y, z \geq 0
$$

- $\tan ^{-1} x_{1}+\tan ^{-1} x_{2}+\tan ^{-1} x_{3}+\ldots+\tan ^{-1} x_{n}$

$$
=\tan ^{-1}\left[\frac{S_{1}-S_{3}+S_{5}-S_{7}+\ldots .}{1-S_{2}+S_{4}-S_{6}+\ldots .}\right]
$$

where $S_{1}=\sum_{i=1}^{n} x_{i},(i=1, \ldots, n) \in R$

$$
\begin{aligned}
& S_{2}=x_{1} x_{2}+x_{2} x_{3}+\ldots .+x_{n-1} x_{n}=\sum x_{1} x_{2} \\
& S_{3}=\sum x_{1} x_{2} x_{3} \text { and so on. }
\end{aligned}
$$

Conversion of Inverse Trigonometric Function in Terms of Others

1. - If $a \sin ^{-1} x+b \cos ^{-1} x=c$, then

$$
a \sin ^{-1} x-b \cos ^{-1} x=\frac{c(a+b)-\pi a b}{a-b}
$$

- If $a \tan ^{-1} x+b \cot ^{-1} x=c$, then

$$
b \tan ^{-1} x+a \cot ^{-1} x=\frac{\pi(a+b)-2 c}{2}
$$

- If $a \sec ^{-1} x+b \operatorname{cosec}^{-1} x=c$, then

$$
b \sec ^{-1} x-a \operatorname{cosec}^{-1} x=\frac{2 c(a+b)-\pi\left(a^{2}+b^{2}\right)}{2(a-b)}
$$

2. $\sin ^{-1} x=\cos ^{-1} \sqrt{1-x^{2}}$
$\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}=\sec ^{-1} \frac{1}{\sqrt{1-x^{2}}}$

$\operatorname{cosec}^{-1}\left(\frac{1}{x}\right)=\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}$
Similarly for $\cos ^{-1} x$ and $\tan ^{-1} x$.

Medians and Centroid of Triangle

1. The distances of centroid from the vertices A, B, C of the triangle $A B C$ are $G A, G B$ and $G C$ respectively given by

- $G A=\frac{\sqrt{2 b^{2}+2 c^{2}-a^{2}}}{3}$
- $G B=\frac{\sqrt{2 a^{2}+2 c^{2}-b^{2}}}{3}$
- $G C=\frac{\sqrt{2 a^{2}+2 b^{2}-c^{2}}}{3}$

2. Distances of centroid (G) from the sides $B C, C A$ and $A B$ respectively given by

- $G_{a}=\frac{2 \times \text { area of triangle }}{3 a}=\frac{2 \Delta}{3 a}$
- $G_{b}=\frac{2 \Delta}{3 b} \quad$ - $G_{c}=\frac{2 \Delta}{3 c}$
- $A D=\frac{1}{2} \sqrt{b^{2}+c^{2}+2 b c \cos A}$
- $B E=\frac{1}{2} \sqrt{c^{2}+a^{2}+2 a c \cos B}$

- $C F=\frac{1}{2} \sqrt{a^{2}+b^{2}+2 a b \cos C}=\frac{1}{2} \sqrt{2 a^{2}+2 b^{2}-c^{2}}$

Bisectors of Angles

If $A D$ is bisector of angle A and divide the opposite sides $B C$ in two parts l and m then by geometry we have

$$
\frac{l}{m}=\frac{A B}{A C}=\frac{c}{b}
$$

$\therefore \frac{l}{c}=\frac{m}{b}=\frac{l+m}{b+c}=\frac{a}{b+c}$
$\Rightarrow l=\frac{a c}{b+c}$ and $m=\frac{a b}{a+c}$

Let $A D=\lambda$ then we have

$$
\begin{aligned}
& \operatorname{ar}(\triangle A B D)+\operatorname{ar}(\triangle A C D)=\operatorname{ar}(\triangle A B C) \\
\Rightarrow & \frac{c}{2} \lambda \sin \frac{A}{2}+\frac{b}{2} \lambda \sin \frac{A}{2}=\frac{1}{2} b c \sin A \\
\Rightarrow & \lambda=\text { length of } A D=\frac{b c \sin A}{(b+c) \sin \frac{A}{2}} \\
& =\frac{2 b c \cos (A / 2)}{b+c}\left(\text { using } \sin A=2 \sin \frac{A}{2} \cos \frac{A}{2}\right)
\end{aligned}
$$

Properties of Triangles and Circles

1. Sine formula

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

2. Cosine formula

- $\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
- $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.
- $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

3. Projection formula

- $a=c \cos A+b \cos C$
- $b=a \cos C+c \cos A$
- $c=a \cos B+b \cos A$

4. Half angle formula

- $\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}$ - $\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}$
- $\sin \frac{B}{2}=\sqrt{\frac{(s-c)(s-a)}{a c}} \quad \cos \frac{B}{2}=\sqrt{\frac{s(s-b)}{a c}}$
- $\sin \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}} \quad \cos \frac{C}{2}=\sqrt{\frac{s(s-c)}{a b}}$

5. Area of $\triangle A B C$ in different forms If Δ denotes the area of triangle $A B C$

- $\Delta=\frac{c^{2} \sin A \sin B}{2 \sin C}=\frac{b^{2} \sin A \sin C}{2 \sin B}=\frac{a^{2} \sin B \sin C}{2 \sin A}$
- $\Delta=\frac{1}{2} a b \sin C=\frac{1}{2} a c \sin B=\frac{1}{2} b c \sin A$

6. Tangent rule (Napier's analogy)

- $\tan \left(\frac{B-C}{2}\right)=\frac{b-c}{b+c} \cot \frac{A}{2}$
- $\tan \left(\frac{C-A}{2}\right)=\frac{c-a}{c+a} \cot \frac{B}{2}$
- $\tan \left(\frac{A-B}{2}\right)=\frac{a-b}{a+b} \cot \frac{C}{2}$

Circumcircle and Incircle

- Circumcircle of a triangle and circumradius (R) $O A=O B=O C=R$, where O is point of intersection of perpendicular bisector of sides of the triangle $A B C$

1. $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$
2. $R=\frac{a b c}{4 \Delta}=\frac{a b c}{4 \sqrt{s(s-a)(s-b)(s-c)}}$

- Inscribed Circle and Inradius
O is point of intersection of internal bisector known as incentre (r).
$O F=O E=O D=$ length of perpendicular from incentre O to any one of the side of the triangle.

1. $r=\frac{\Delta}{s}$ i.e. $\Delta=r s$
2. $r=(s-a) \tan \frac{A}{2}, r=(s-b) \tan \frac{B}{2}, r=(s-c) \tan \frac{C}{2}$ $\therefore r=(s-a) \tan \frac{A}{2}=(s-b) \tan \frac{B}{2}=(s-c) \tan \frac{C}{2}$ $r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
3. $r=\frac{a \sin (B / 2) \sin (C / 2)}{\cos (A / 2)}, r=\frac{b \sin (A / 2) \sin (C / 2)}{\cos (B / 2)}$ $r=\frac{c \sin (A / 2) \sin (B / 2)}{\cos (A / 2)}$
4. Let r_{1}, r_{2}, r_{3} are exradius and a, b, c are sides of triangle $A B C$ then

- $r_{1}=\frac{\Delta}{s-a}=\sqrt{\frac{s(s-b)(s-c)}{(s-a)}}, r_{2}=\frac{\Delta}{s-b}=\sqrt{\frac{s(s-a)(s-c)}{s-b}}$,
$r_{3}=\frac{\Delta}{s-c}=\sqrt{\frac{s(s-a)(s-b)}{s-c}}$
Thus, $r_{1}=\frac{\Delta}{s-a}=s \tan \frac{A}{2}=\frac{a \cos (B / 2) \cos (C / 2)}{\cos (A / 2)}$

$$
=4 R \cos \frac{B}{2} \cos \frac{C}{2} \sin \frac{A}{2}
$$

$r_{2}=4 R \cos \frac{A}{2} \cos \frac{C}{2} \sin \frac{B}{2}, r_{3}=4 R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$

- $\frac{1}{r}=\frac{s}{\Delta}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$
- $r_{1}+r_{2}+r_{3}=4 R+r$
- $r \cdot r_{1} r_{2} r_{3}=\Delta^{2}$
- $\frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}=\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$

5. If r_{1}, r_{2}, r_{3} are given then we can find

- $s=\sqrt{r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}}$
- $\Delta=\frac{r_{1} r_{2} r_{3}}{\sqrt{\sum r_{1} r_{2}}}, r=\frac{r_{1} r_{2} r_{3}}{\sum r_{1} r_{2}}$
- $R=\frac{\left(r_{1}+r_{2}\right)\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)}{4\left(r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}\right)}$
- $a=\frac{r_{1}\left(r_{2}+r_{3}\right)}{\sqrt{\sum r_{1} r_{2}}}, b=\frac{r_{2}\left(r_{3}+r_{1}\right)}{\sqrt{\sum r_{1} r_{2}}}, c=\frac{r_{3}\left(r_{2}+r_{1}\right)}{\sqrt{\sum r_{1} r_{2}}}$
- $\sin B=\frac{2 r_{2} \sqrt{\sum r_{1} r_{2}}}{\left(r_{2}+r_{3}\right)\left(r_{2}+r_{1}\right)}, \sin C=\frac{2 r_{3} \sqrt{\sum r_{1} r_{2}}}{\left(r_{3}+r_{1}\right)\left(r_{3}+r_{2}\right)}$
and $\sin A=\frac{2 r_{1} \sqrt{\sum r_{1} r_{2}}}{\left(r_{1}+r_{2}\right)\left(r_{1}+r_{3}\right)}$

Area of Cyclic Quadrilateral

Let $A B C D$ is a cyclic quadrilateral with sides $A B=a, B C$ $=b, C D=c, D A=d$ then $\angle A+\angle C=\angle B+\angle D=180^{\circ}$.

1. Area of cyclic quadrilateral
$=\frac{1}{2} a b \sin B+\frac{1}{2} c d \sin D$
$=\frac{1}{2}(a b+c d) \sin \mathrm{B}$
$\left(\because \angle D=180^{\circ}-B\right)$

where $s=\frac{a+b+c+d}{2}$
2. Again, area of cyclic quadrilateral
$=\frac{1}{2}(a b+c d) \sin B=\frac{1}{2}(a b+c d) \sin D$
$\therefore \sin B=\frac{2 \cdot \text { area of cyclic quadrilateral }}{a b+c d}$
3. $\cos B=\frac{\left(a^{2}+b^{2}\right)-\left(c^{2}+d^{2}\right)}{2(a b+c d)}$
(Use this result, if three sides and included angle of one is known)
4. $(A C)^{2}=a^{2}+b^{2}-2 a b \cos B$

$$
\begin{align*}
& =a^{2}+b^{2}-2 a b\left[\frac{\left(a^{2}+b^{2}\right)-\left(c^{2}+d^{2}\right)}{2(a b+c d)}\right] \\
& (A C)^{2}=\frac{(a c+b d)(a d+b c)}{a b+c d} \tag{ii}
\end{align*}
$$

and $(A C)^{2}=d^{2}+c^{2}-2 c d \cos D=d^{2}+c^{2}+2 c d \cos B$

$$
\begin{equation*}
=d^{2}+c^{2}+2 c d\left[\frac{\left(a^{2}+b^{2}\right)-\left(c^{2}+d^{2}\right)}{2(a b+c d)}\right] \tag{iii}
\end{equation*}
$$

\therefore On equating (ii) and (iii) one get (i) area of quadrilateral.
5. Circumradius of a cyclic quadrilateral

$$
R=\frac{\sqrt{(a c+b d)(a d+b c)(a b+c d)}}{4 \Delta}
$$

6. If A, B, C, D taken in order then in a cyclic quadrilateral $A B C D$ we have
$\cos A+\cos B+\cos C+\cos D=0$

Concept of Pedal Triangle

Let $A B C$ be any triangle and $A D, B E, C F$ are perpendicular's drawn from A, B, C to the opposite sides $B C, C A, A B$ respectively. The point of concurrency
of these perpendiculars (altitudes) of the triangle $A B C$ is called orthocentre of the triangle. The triangle formed by joining the feet of these perpendiculars is called pedal triangle. In the figure, $\triangle D E F$ is the pedal triangle of $\triangle A B C$.
\therefore Sides of pedal triangle are

- $D E=c \cos C=2 R \sin C \cos C=R \sin 2 C$
- $E F=a \cos A=2 R \sin A \cos A=R \sin 2 A$
- $D F=b \cos B=2 R \sin B \cos B=R \sin 2 B$

$$
\left(\because \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R\right)
$$

- The inradius of pedal triangle $=2 R \cos A \cos B \cos C$
- Circumradius of pedal triangle $=R / 2$
- Perimeter of pedal triangle $=a \cos A+b \cos B+c \cos C$
- Area of pedal triangle $=2 \Delta \cos A \cos B \cos C=\frac{1}{2} R^{2}$ $\sin 2 A \sin 2 B \sin ^{2} C$

Ptolemy's Theorem

In a cyclic quadrilateral, the product of the diagonals is equal to the sum of the products of the lengths of opposite sides.
i.e. $A C \cdot B D=a c+b d$
or $\left.A C \cdot B D=A B \cdot C D+B C \cdot B D\}^{*}\right)$

PROBLEMS

Single Correct Answer Type

1. If $\cos ^{-1} \sqrt{x^{2}+2 x+1}+\operatorname{cosec}^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2}$ $x \neq 0$, then value of $\sec ^{-1} \frac{x}{2}-\sin ^{-1}\left(\frac{x}{2}\right)$ is equal to
(a) $-\frac{3 \pi}{2}$
(b) $-\frac{\pi}{2}$
(c) $3 \pi / 2$
(d) $\pi / 2$
2. If $\left(\cot ^{-1} x\right)^{2}-9 \cot ^{-1} x+20>0$, then x lies is
(a) $(\cot 5, \cot 4)$
(b) $(-\infty, \cot 5) \cup(\cot 4, \infty)$
(c) $(\cot 4, \infty)$
(d) None of these
3. If the sum of the roots of the equation $2 \sin ^{2} 2 x+$ $7 \cos 2 x-7=0$ over the interval $[0,2017]$ is $m \pi$ then the value of $[\sqrt{m}]$ (where [.] represents greatest integer function) is
(a) 453
(b) 454
(c) 205761
(d) 642
4. The number of solutions of $\sum_{r=1}^{2017} \cos r x=2017$ in
the interval $[0,2 \pi]$ is
(a) 2018
(b) 2017
(c) 2015
(d) None of these
5. The general solution of the equation $\sum_{\lambda=1}^{n} \cos \left(\lambda^{2} x\right) \sin (\lambda x)=\frac{1}{2}$ is
(a) $\frac{(4 p+1)}{n(n+1)} \frac{\pi}{2}, p \in I$
(b) $\frac{4 p-1}{n(n+1)} \frac{\pi}{2}, p \in I$
(c) $\frac{4 p+1}{n(n+1)} \pi$
(d) None of these
6. If $\log _{\cos x} \sin x+\log _{\sin x} \cos x=2$, then value of x equals
(a) $(2 p+1) \frac{\pi}{4}$
(b) $\frac{p \pi}{4}$
(c) $(4 p+1) \frac{\pi}{4}$
(d) $(p+1) \frac{\pi}{4}$
7. If ex-radii r_{1}, r_{2}, r_{3} of a triangle are in H.P then sides a, b, c are in
(a) A.G.P.
(b) A.P.
(c) G.P.
(d) None of these
8. A triangle is inscribed in a circle. The vertices of the triangle divided the circumference of the circle into three area of length $6,8,10$ units then the area of triangle is equal to (in sq. units)
(a) $\frac{64 \sqrt{3}(\sqrt{3}+1)}{\pi^{2}}$
(b) $\frac{72 \sqrt{3}}{\pi^{2}}(\sqrt{3}+1)$
(c) $\frac{36 \sqrt{3}(\sqrt{3}-1)}{\pi^{2}}$
(d) $\frac{36 \sqrt{3}}{\pi^{2}}(\sqrt{3}+1)$
9. The number of real roots of the equation $\sec \theta+\operatorname{cosec} \theta=\sqrt{15}$ lying between 0 and 2π is/are
(a) 0
(b) 2
(c) 4
(d) 8
10. The number of roots of the equation $x+2 \tan x=\frac{\pi}{2}$
in the interval $[0,2 \pi]$ is
(a) 3
(b) 2
(c) 1
(d) 0

More than One Correct Answer Type

11. If $f_{n}(\alpha)=\tan \frac{\alpha}{2}(1+\sec \alpha)(1+\sec 2 \alpha)(1+\sec 4 \alpha)$ $\ldots . .\left(1+\sec 2^{n} \alpha\right), n \in N$ then
(a) $f_{2}\left(\frac{\pi}{16}\right)=f_{5}\left(\frac{\pi}{128}\right)$
(b) $f_{3}\left(\frac{\pi}{32}\right)=f_{4}\left(\frac{\pi}{64}\right)$
(c) $f_{2}\left(\frac{\pi}{16}\right)=f_{4}\left(\frac{\pi}{64}\right)$
(d) $f_{2}\left(\frac{\pi}{16}\right)=f_{3}\left(\frac{\pi}{32}\right)=f_{4}\left(\frac{\pi}{64}\right)=f_{5}\left(\frac{\pi}{128}\right)=1$
12. If $y=\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3}$ then
(a) y has least value $\frac{-\pi^{3}}{8}$
(b) y has greatest value $\frac{7 \pi^{3}}{8}$
(c) y has greatest value $\frac{5 \pi^{3}}{16}$
(d) y has least value $\frac{\pi^{3}}{32}$
13. If $x=a \sin ^{1008} \alpha \cos ^{1009} \alpha, y=a \sin ^{1009} \alpha \cos ^{1008} \alpha$ and $\frac{\left(x^{2}+y^{2}\right)^{l}}{(x y)^{m}},(l, m \in N)$ is independent of α, then
(a) $l=2017$
(b) $m=2017$
(c) $l=2016$
(d) $m=2016$
14. If $(1+a x)^{n}=1+16 x+112 x^{2}+\ldots .$. and $m=$ number of positive integral solutions of the equation $\tan ^{-1} x$ $+\cot ^{-1} y=\tan ^{-1} 5$, then which of the following is true?
(a) $m=2$
(b) $n=8$
(c) $a=2$
(d) $\frac{n}{m a}=2$
15. Let $f(\alpha)=e^{\cos ^{-1}\left(\sin \left(\alpha+\frac{\pi}{3}\right)\right)}$ then
(a) $f\left(\frac{8 \pi}{9}\right)=e^{\frac{13 \pi}{18}}$
(b) $f\left(-\frac{7 \pi}{4}\right)=e^{\frac{\pi}{12}}$
(c) $f\left(-\frac{7 \pi}{4}\right)=e^{\frac{11 \pi}{12}}$
(d) $f\left(\frac{8 \pi}{9}\right)=e^{\frac{5 \pi}{18}}$
16. If $\tan 3 A=\lambda \tan A, A \neq 1$ then
(a) $\lambda<\frac{1}{3}$
(b) $\frac{\sin 3 A}{\sin A}=\frac{2 \lambda}{\lambda-1}$
(c) $\lambda>3$
(d) $\frac{\cos A}{\cos 3 A}=\frac{\lambda-1}{2}$
17. The solution of the system of equations $x+y=\frac{\pi}{2}$ and $\sin x+\sin y=\sqrt{2}$ satisfies by
(a) $x=2 k \pi+\frac{\pi}{4}, k \in I$
(b) $x=2 k \pi-\frac{\pi}{2}, k \in I$
(c) $y=\frac{\pi}{4}-2 k \pi, k \in I$
(d) $x=2 k \pi+\frac{\pi}{3}, k \in I$

Comprehension Type

Paragraph for Q.No. 18 to 20
Let $\cos A \cos 2 A \cos 4 A \cos 8 A$ \qquad $\cos 2^{n-1} A$

$$
\left\{\begin{array}{c}
\frac{\sin 2^{n} A}{2^{n} \sin A}, \text { if } A \neq n \pi \\
\frac{1}{2^{n}}, \text { if } A=\frac{\pi}{2^{n}+1} \\
-\frac{1}{2^{n}}, \text { if } A=\frac{\pi}{2^{n}-1} \forall n \in N
\end{array}\right.
$$

18. The value of $\prod_{r=1}^{4} \cos 2^{r} A\left(\right.$ if $\left.A=\frac{\pi}{15}\right)$ is
(a) $\frac{1}{4}$
(b) $\frac{1}{8}$
(c) $\frac{1}{16}$
(d) $-\frac{1}{16}$
19. The value of $\prod_{r=1}^{7} \sin (2 r-1) A\left(\right.$ if $\left.A=\frac{\pi}{14}\right)$ is
(a) $-\frac{1}{64}$
(b) $\frac{1}{64}$
(c) $\frac{1}{32}$
(d) $-\frac{1}{32}$
20. If $A=\frac{\pi}{7}$ then value of $\prod_{r=1}^{3} \cos 2 r A$ is
(a) $-\frac{1}{2}$
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) $\frac{1}{8}$

Paragraph for Q.No. 21 to 23
If $\sum_{r=1}^{n} \tan ^{-1}\left(\frac{x_{r}-x_{r-1}}{1+x_{r-1} x_{r}}\right)=$
$\sum \tan ^{-1} x_{r}-\tan ^{-1} x_{r-1}=\tan ^{-1} x_{n}-\tan ^{-1} x_{0} \quad \forall n \in N$
21. The sum of infinite terms of the series $\cot ^{-1} 3+\cot ^{-1} 7+\cot ^{-1} 13+\ldots \ldots . \infty$ is equal to
(a) $\frac{\pi}{4}$
(b) $\tan ^{-1} 2$
(c) $\cot ^{-1} 2$
(d) $\frac{\pi}{2}$
22. The value of the infinite terms of the series

$$
\begin{aligned}
\tan ^{-1}\left(\frac{2}{2+1^{2}+1^{4}}\right)+ & \tan ^{-1}\left(\frac{4}{2+2^{2}+2^{4}}\right) \\
& +\tan ^{-1}\left(\frac{6}{2+3^{2}+3^{4}}\right)+\ldots . . \text { is }
\end{aligned}
$$

(a) $\frac{3 \pi}{2}$
(b) $\frac{3 \pi}{4}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$
23. The value of the infinite forms of the series

$$
\begin{array}{r}
\tan ^{-1} \frac{1}{3}+\tan ^{-1}\left(\frac{2}{9}\right)+\tan ^{-1}\left(\frac{4}{33}\right)+\ldots+\tan ^{-1}\left(\frac{8}{129}\right) \\
+\tan ^{-1}\left(\frac{16}{513}\right)+\tan ^{-1}\left(\frac{32}{2049}\right) \ldots \infty
\end{array}
$$

(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) 2π
(d) π

Paragraph for Q.No. 24 to 26

Let $A D, B E, C F$ are perpendicular from angular points of a triangle $A B C$ on the opposite sides let Δ, r, R respectively represents the area, in radius and circumradius of the triangle.
24. If perimeters of $\triangle A B C$ and $\triangle D E F$ are P_{1} and P_{2} respectively then the value of $\frac{P_{1}}{P_{2}}$ equals
(a) $\frac{\Delta}{r R}$
(b) $\frac{r}{R}$
(c) $\frac{r R}{\Delta}$
(d) $\frac{R}{r}$
25. If area of $\Delta^{\prime} \mathrm{s} A E F, B F D$ and $C D E$ are Δ_{1}, Δ_{2} and Δ_{3} respectively then $\Delta_{1}+\Delta_{2}+\Delta_{3}$ equals
(a) $2 \Delta(1+\cos A \cos B \cos C)$
(b) $2 \Delta(1+\sin A \sin B \sin C)$
(c) $\Delta(1-2 \cos A \cos B \cos C)$
(d) $\Delta(1-2 \sin A \sin B \sin C)$
26. If area of $\triangle D E F$ is Δ^{\prime} then value of $\frac{\Delta^{\prime}}{\Delta}$ equals
(a) $4 \cos A \cos B \cos C$
(b) $2 \cos A \cos B \cos C$
(c) $4 \sin A \sin B \sin C$
(d) $2 \sin A \sin B \sin C$

Matrix-Match Type

27. Match the trigonometric ratio with the equations whose one of the roots is given

Column-I		Column-II	
A.	$\cos 6^{\circ}$	1.	$8 x^{3}-6 x-1=0$
B.	$2 \cos 10^{\circ}$	2.	$x^{3}-3 x^{2}-3 x+1=0$
C.	$\tan 15^{\circ}$	3.	$x^{6}-6 x^{4}+9 x^{2}-3=0$
D.	$\cos 20^{\circ}$	4.	$32 x^{5}-40 x^{3}+10 x-\sqrt{3}=0$

28. Match the following.

	Column-I		Column-II	
A.	$\cos ^{-1} \frac{3}{5}+2 \tan ^{-1} \frac{1}{3}$	1.	π	
B.	$\cos ^{-1} \frac{5}{13}+\sin ^{-1} \frac{3}{5}+\tan ^{-1} \frac{63}{16}$	2.	$\pi / 6$	

C.	$\sin ^{-1} \frac{1}{5 \sqrt{2}}+2 \tan ^{-1} \frac{1}{3}$	3.	$\pi / 2$
D.	If $A=\tan ^{-1} \frac{x \sqrt{3}}{2 \lambda-x}$ and	4.	$\pi / 4$
	$B=\tan ^{-1} \frac{2 x-\lambda}{\lambda \sqrt{3}}$ then $A-B$ is		

Integer Type

29. If in a $\triangle A B C, B C=5, C A=4, A B=3$ and D, E are the points on the side $B C$ such that $B D=D E=E C$ then the value of $8 \tan (\angle C A E)$ is
30. The two adjacent sides of a cyclic quadrilateral are 2 and 5 and angle between them is 60°. If area of the quadrilateral is $4 \sqrt{3}$ then find the length of larger of the rest two sides.
31. If $\alpha+\beta+\gamma=\pi$ and $\tan \left(\frac{\alpha+\beta-\gamma}{4}\right) \tan \left(\frac{\gamma+\alpha-\beta}{4}\right) \tan \left(\frac{\gamma+\beta-\alpha}{4}\right)=1$ then the value of $1+\cos \alpha+\cos \beta+\cos \gamma$ is $(m-1)$ thus the value of m equals

SOLUTIONS

1. (c) : $\because \cos ^{-1} \sqrt{x^{2}+2 x+1}+\operatorname{cosec}^{-1} \sqrt{x^{2}+2 x+1}=\frac{\pi}{2}$
$\Rightarrow \cos ^{-1} \sqrt{x^{2}+2 x+1}+\sin ^{-1}\left(\frac{1}{\sqrt{x^{2}+2 x+1}}\right)=\frac{\pi}{2}$
$\Rightarrow \cos ^{-1} \sqrt{x^{2}+2 x+1}-\cos ^{-1}\left(\frac{1}{\sqrt{x^{2}+2 x+1}}\right)=0$
$\Rightarrow \cos ^{-1}|x+1|-\cos ^{-1} \frac{1}{|x+1|}=0(x \neq-1)$
$\Rightarrow|x+1|=\frac{1}{|x+1|} \Rightarrow|x+1|^{2}=1$
or, $x+1= \pm 1 \Rightarrow x=-2,0$
but $x \neq 0 \quad \Rightarrow \quad x=-2$
Then, $\sec ^{-1}\left(\frac{x}{2}\right)-\sin ^{-1}\left(\frac{x}{2}\right)$

$$
=\sec ^{-1}(-1)-\sin ^{-1}(-1)=\pi+\frac{\pi}{2}=\frac{3 \pi}{2}
$$

2. (b): $\because\left(\cot ^{-1} x\right)^{2}-9 \cot ^{-1} x+20>0$
$\Rightarrow\left(\cot ^{-1} x-5\right)\left(\cot ^{-1} x-4\right)>0$
$\Rightarrow \cot ^{-1} x<4$ and $\cot ^{-1} x>5$

As $\cot ^{-1} x$ is decreasing function then
$x \in(-\infty, \cot 5) \cup(\cot 4, \infty)$
3. (a): $\because \quad 2 \sin ^{2} 2 x+7 \cos 2 x-7=0$
$\Rightarrow 2\left(1-\cos ^{2} 2 x\right)+7 \cos 2 x-7=0$
$\Rightarrow 2 \cos ^{2} 2 x-7 \cos 2 x+5=0$
$\Rightarrow 2 t^{2}-7 t+5=0$, where $t=\cos 2 x$
$\Rightarrow(t-1)(2 t-5)=0 \Rightarrow t=1, t=\frac{5}{2}$ (rejected)
$\therefore t=1 \Rightarrow \cos 2 x=1=\cos 0^{\circ}$
$\Rightarrow 2 x=2 n \pi \Rightarrow x=n \pi, n \in I$
\therefore The roots over the interval [0, 2017] are
$0,2 \pi, 3 \pi, \ldots .641 \pi$,
$(\because 642 \pi>2017)$
\Rightarrow Sum of roots $=\pi+2 \pi+3 \pi+\ldots .+641 \pi$
$=205761 \pi=m \pi$ (given)
$\therefore \quad m=205761 \Rightarrow[\sqrt{m}]=453$
4. (d) : $\because \quad \sum_{r=1}^{2017} \cos r x=2017$
$\Rightarrow \cos x+\cos 2 x+\cos 3 x+\cos 4 x+\cos 5 x+\ldots . . .+\cos 2017 x$
$=2017$, which is possible only if $\cos x=\cos 2 x=\ldots$.
$=\cos 2017 \alpha=1$ and is satisfied for $x=0$ and $x=2 \pi$.
\therefore Number of solutions is 2 .
5. (a): \because Given, $\sum_{\lambda=1}^{n} 2 \cos \left(\lambda^{2} x\right) \cdot \sin (\lambda x)=1$
$\Rightarrow \quad \sum_{\lambda=1}^{n}[\sin \{\lambda(\lambda+1)\} x-\sin \{\lambda(\lambda-1)\} x]=1$
Putting $\lambda=1,2, \ldots, n-1, n$
$\Rightarrow(\sin 2 x-\sin 0)+(\sin 6 x-\sin 2 x)+(\sin 12 x-\sin 6 x)$
$\ldots .+\{\sin ((n-1) n) x-\sin (n-2)(n-1) x\}+$
$\{\sin (n(n+1)) x-\sin (n(n-1)) x\}$
$\Rightarrow \sin [n(n+1) x]-\sin 0=1 \Rightarrow \sin n(n+1) x=1$
$\Rightarrow n(n+1) x=2 p \pi+\frac{\pi}{2}, p \in I \Rightarrow x=\frac{(4 p+1)}{n(n+1)} \cdot \frac{\pi}{2}, p \in I$
6. (c) : $\log _{\cos x}(\sin x)+\log _{\sin x}(\cos x)=2$
$\Rightarrow \frac{\log \sin x}{\log \cos x}+\frac{\log \cos x}{\log \sin x}=2\left(\right.$ Using $\left.\log _{a} b=\frac{\log b}{\log a}\right)$
$\Rightarrow m+\frac{1}{m}=2 \quad\left(\right.$ where $\left.m=\frac{\log (\sin x)}{\log (\cos x)}\right)$
$\Rightarrow m^{2}-2 m+1=0 \quad \therefore m=1$
$\therefore \frac{\log \sin x}{\log \cos x}=1 \Rightarrow \log (\sin x)-\log (\cos x)=0$
$\Rightarrow \log (\tan x)=0 \quad \therefore \tan x=e^{0}=1=\tan \frac{\pi}{4}$
$\Rightarrow x=p \pi+\frac{\pi}{4}=(4 p+1) \frac{\pi}{4}$
7. (b)
8. (d) : From problem, we have assumed that
$\overparen{A B}=10, \overparen{C A}=8, \overparen{B C}=6$
Let ' O ' be the centre of circumcircle of the $\triangle A B C$ and $O A=O B=O C=r$
be circumradii of the circle.

$\therefore r \alpha=6, r \beta=8, r \gamma=10$
$\therefore r \alpha+r \beta+r \gamma=6+8+10 \quad(\because$ Angle $=\overline{\text { radius }})$
$\Rightarrow r(\alpha+\beta+\gamma)=24 \Rightarrow r(2 \pi)=24 \Rightarrow r=\frac{12}{\pi}$
\therefore Area of triangle $A B C=\operatorname{ar}(\triangle O B C)+\operatorname{ar}(\triangle O C A)$
$+\operatorname{ar}(\triangle O A B)$
$=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta+\frac{1}{2} r^{2} \sin \gamma$
$=\frac{1}{2} r^{2}(\sin \alpha+\sin \beta+\sin \gamma)$
$=\frac{1}{2} r^{2}\left(\sin \left(\frac{6}{r}\right)+\sin \left(\frac{8}{r}\right)+\sin \left(\frac{10}{r}\right)\right)$
$=\frac{1}{2}\left(\frac{12}{\pi}\right)^{2}\left[\sin \frac{6}{12} \pi+\sin \left(\frac{8}{12} \pi\right)+\sin \left(\frac{10}{12} \pi\right)\right]$
$=\frac{72}{\pi^{2}}\left[\sin \frac{\pi}{2}+\sin \frac{2 \pi}{3}+\sin \frac{5 \pi}{6}\right]$
$=\frac{72}{\pi^{2}}\left[\sin 90^{\circ}+\sin 120^{\circ}+\sin 150^{\circ}\right]$
$=\frac{72}{\pi^{2}}\left(1+\frac{\sqrt{3}}{2}+\frac{1}{2}\right)=\frac{36 \sqrt{3}}{\pi^{2}}(\sqrt{3}+1)$
9. (c) : $\because \sec \theta+\operatorname{cosec} \theta=\sqrt{15}$
$\Rightarrow \sin \theta+\cos \theta=\sqrt{15} \sin \theta \cos \theta$
$\Rightarrow 1+\sin 2 \theta=\frac{15}{4} \sin ^{2} 2 \theta$ (after squaring)
$\Rightarrow 15 \sin ^{2} 2 \theta-4 \sin 2 \theta-4=0$
$\Rightarrow(3 \sin 2 \theta-2)(5 \sin 2 \theta+2)=0$
$\Rightarrow \sin 2 \theta=\frac{2}{3}$ and $\sin 2 \theta=-\frac{2}{5}$
As $\theta \in[0,2 \pi]$, two solutions from I and II quadrants and two solutions from III and IV quadrants.
\therefore Total number of solutions $=4$
10. (a): $\because x+2 \tan x=\frac{\pi}{2} \Rightarrow \tan x=\frac{\pi}{4}-\frac{x}{2}$

If $y=\tan x=\frac{\pi}{4}-\frac{x}{2}$
$\Rightarrow \quad y=\tan x \ldots \ldots$. (i) and $y=\frac{\pi}{4}-\frac{x}{2}$

From the graph, (i) and (ii) intersect at 3 points
$\therefore \quad$ Number of solutions $=3$
11. $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}): \because f_{n}(\alpha)=\tan (\alpha / 2)(1+\sec \alpha)(1+\sec 2 \alpha)$ $(1+\sec 4 \alpha) \ldots . .\left(1+\sec 2^{n} \alpha\right)$ $=\tan \left(\frac{\alpha}{2}\right)\left(\frac{1+\cos \alpha}{\cos \alpha}\right)(1+\sec 2 \alpha)(1+\sec 4 \alpha) \ldots .\left(1+\sec 2^{n} \alpha\right)$ $=\left(\frac{\sin (\alpha / 2)}{\cos (\alpha / 2)}\right)\left(\frac{2 \cos ^{2}(\alpha / 2)}{\cos \alpha}\right)$ $(1+\sec 2 \alpha)(1+\sec 4 \alpha) \ldots . .\left(1+\sec 2^{n} \alpha\right)$
$=\tan \alpha\left(\frac{1+\cos 2 \alpha}{\cos 2 \alpha}\right)(1+\sec 4 \alpha) \ldots . .\left(1+\sec 2^{n} \alpha\right)$
$=\tan 2 \alpha(1+\sec 4 \alpha) \ldots .\left(1+\sec 2^{n} \alpha\right)$
$=\tan 4 \alpha(1+\sec 8 \alpha) \ldots .\left(1+\sec 2^{n} \alpha\right)$
$=\tan 8 \alpha(1+\sec 16 \alpha) \ldots\left(1+\sec 2^{n} \alpha\right)$
$=\tan 2^{n} \alpha$ thus $f_{n}(\alpha)=\tan 2^{n} \alpha$
$\therefore f_{2}\left(\frac{\pi}{16}\right)=\tan \left(\frac{\pi}{4}\right), f_{3}\left(\frac{\pi}{32}\right)=\tan \frac{\pi}{4}$
$f_{4}\left(\frac{\pi}{64}\right)=\tan \frac{\pi}{4}, f_{5}\left(\frac{\pi}{128}\right)=\tan \frac{\pi}{4}$
$\therefore f_{2}\left(\frac{\pi}{16}\right)=f_{3}\left(\frac{\pi}{32}\right)=f_{4}\left(\frac{\pi}{64}\right)=f_{5}\left(\frac{\pi}{128}\right)=1$
(as $\tan \pi / 4=1$)
12. (b, d) :

Given, $y=\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3}=\left(\sin ^{-1} x+\cos ^{-1} x\right)$
$\left\{\left(\sin ^{-1} x\right)^{2}-\sin ^{-1} x \cos ^{-1} x+\left(\cos ^{-1} x\right)^{2}\right\}$
$\left.\therefore \quad y=\frac{\pi}{2}\left\{\sin ^{-1} x+\cos ^{-1} x\right)^{2}-3 \sin ^{-1} x \cos ^{-1} x\right\}$
$=\frac{\pi}{2}\left\{\frac{\pi^{2}}{4}-3 \sin ^{-1} x\left(\frac{\pi}{2}-\sin ^{-1} x\right)\right\}$
$=\frac{\pi}{2}\left\{3\left(\sin ^{-1} x\right)^{2}-\frac{3 \pi}{2} \sin ^{-1} x+\frac{\pi^{2}}{4}\right\}$
$\Rightarrow 3\left(\sin ^{-1} x\right)^{2}-\frac{3 \pi}{2} \sin ^{-1} x+\left(\frac{\pi^{2}}{4}-\frac{2 y}{\pi}\right)=0$,
For real value $D \geq 0 \Rightarrow \frac{9 \pi^{2}}{4}-4(3)\left(\frac{\pi^{2}}{4}-\frac{2 y}{\pi}\right) \geq 0$
$\Rightarrow \frac{9 \pi^{2}}{4}-3 \pi^{2}+\frac{24 y}{\pi} \geq 0 \Rightarrow \frac{24 y}{\pi} \geq \frac{3 \pi^{2}}{4}$
$\Rightarrow y \geq \frac{\pi^{3}}{32}$
Again $-1 \leq \sin ^{-1} x \leq 1 \Rightarrow-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
$\therefore y(-1)=\left\{\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3}\right\}_{x=-1}$
$=\left(\sin ^{-1}(-1)\right)^{3}+\left(\cos ^{-1}(-1)\right)^{3}=-\frac{\pi^{3}}{8}+\pi^{3}=\frac{7 \pi^{3}}{8}$
Similarly, $y(1)=\left(\sin ^{-1}(1)\right)^{3}+\left(\cos ^{-1} 1\right)^{3}$

$$
\begin{equation*}
=\frac{\pi^{3}}{8}+0=\frac{\pi^{3}}{8} \tag{iii}
\end{equation*}
$$

Form (i), (ii) and (iii) we have $\frac{\pi^{3}}{32}<\frac{\pi^{3}}{8}<\frac{7 \pi^{3}}{8}$
$\therefore \quad$ Least value of $y=\frac{\pi^{3}}{32}$ and greatest value of $y=\frac{7 \pi^{3}}{8}$
13. (a, d): $\because \quad x=a \sin ^{1008} \alpha \cos ^{1009} \alpha$ and $y=a \sin ^{1009} \alpha \cos ^{1008} \alpha$
$\therefore \quad x^{2}+y^{2}=a^{2} \sin ^{2016} \alpha \cos ^{2018} \alpha+a^{2} \sin ^{2018} \alpha \cos ^{2016} \alpha$

$$
=a^{2} \sin ^{2016} \alpha \cos ^{2016} \alpha
$$

and $x y=a^{2} \sin ^{2017} \alpha \cos ^{2017} \alpha=a^{2}(\sin \alpha \cos \alpha)^{2017}$
$\therefore \frac{\left(x^{2}+y^{2}\right)^{l}}{(x y)^{m}}=\frac{a^{2 l}(\sin \alpha \cos \alpha)^{2016 l}}{a^{2 m}(\sin \alpha \cos \alpha)^{2017 m}}$
which is independent of α and it will be possible only if $2016 l=2017 \mathrm{~m}$
$\Rightarrow \quad l=2017, m=2016$
14. $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}):(1+a x)^{n}=1+n a x+\frac{n(n-1)}{2!} a^{2} x^{2}+\ldots .$.
$=1+16 x+112 x^{2}+\ldots .$.
On equating the coefficients of x and x^{2} we get

$$
\begin{aligned}
& n a=16 \text { and } \frac{n(n-1)}{2} a^{2}=112 \\
& \Rightarrow n a(n a-a)=112 \times 2 \\
& \Rightarrow 16(16-a)=112 \times 2 \\
& \Rightarrow 16-a=14 \Rightarrow a=2 \quad \therefore n=8
\end{aligned}
$$

Now $\tan ^{-1} x+\cot ^{-1} y=\tan ^{-1} 5$
$\Rightarrow \tan ^{-1}\left(\frac{1}{y}\right)=\tan ^{-1} 5-\tan ^{-1} x=\tan ^{-1} \frac{5-x}{1+5 x}$
$\Rightarrow \frac{1}{y}=\frac{5-x}{1+5 x} \Rightarrow y=\frac{1+5 x}{5-x}$
As x, y are positive integers

$m t G$

Mad about rehearsing?

Tune. Fine tune. Reach the peak of your readiness for JEE with MTG's $40+16$ Years Chapterwise Solutions. It is undoubtedly the most comprehensive 'real' question bank, complete with detailed solutions by experts.

Studies have shown that successful JEE aspirants begin by familiarising themselves with the problems that have appeared in past JEEs as early as 2 years in advance. Making it one of the key ingredients for their success. How about you then? Get $40+16$ Years Chapterwise Solutions to start your rehearsals early. Visit www.mtg.in to order online.

Available at all leading book shops throughout the country. For more information or for help in placing your order: Call 0124-6601200 or email:info@mtg.in

$\therefore \quad$ From equation $\left({ }^{*}\right)$ the possible value of x are 3,4 when $x=3, y=8$ and when $x=4, y=21$
$\therefore \quad m=2$
Also, $\frac{n}{m a}=\frac{8}{2 \times 2}=2$
15. $(\mathbf{a}, \mathbf{b}): \because f(\alpha)=e^{\cos ^{-1} \sin \left(\alpha+\frac{\pi}{3}\right)}$
$\therefore f\left(\frac{8 \pi}{9}\right)=e^{\cos ^{-1} \sin \left(\frac{8 \pi}{9}+\frac{\pi}{3}\right)}$
$=e^{\cos ^{-1} \sin \left(\frac{11 \pi}{9}\right)}=e^{\cos ^{-1} \sin \left(\frac{9 \pi}{18}+\frac{13 \pi}{18}\right)}=e^{\cos ^{-1} \sin \left(\frac{\pi}{2}+\frac{13 \pi}{18}\right)}$
$=e^{\cos ^{-1}\left(\cos \frac{13 \pi}{18}\right)}=e^{\frac{13 \pi}{18}}$
$\therefore f\left(-\frac{7 \pi}{4}\right)=e^{\cos ^{-1} \sin \left(-\frac{7 \pi}{4}+\frac{\pi}{3}\right)}$
$=e^{\cos ^{-1} \sin \left(-\frac{17 \pi}{12}\right)}=e^{\cos ^{-1}\left\{-\sin \left(\frac{3 \pi}{2}-\frac{\pi}{12}\right)\right.}$
$=e^{\cos ^{-1}\left(\cos \frac{\pi}{12}\right)}=e^{\pi / 12}$
16. $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}):$ Given, $\frac{\tan 3 A}{\tan A}=\lambda$
$\Rightarrow \frac{\tan 3 A-\tan A}{\tan A}=\frac{\lambda-1}{1} \Rightarrow \frac{2 \cos A}{\cos 3 A}=\lambda-1$
$\Rightarrow \frac{\cos A}{\cos 3 A}=\frac{\lambda-1}{2}$
Also $\frac{\tan 3 A}{\tan A}=\lambda$
$\Rightarrow \frac{\sin 3 A}{\cos 3 A} \cdot \frac{\cos A}{\sin A}=\lambda \Rightarrow \frac{\sin 3 A}{\sin A} \cdot \frac{\cos A}{\cos 3 A}=\lambda$,
on using (i) we get
$\frac{\sin 3 A}{\sin A}=\frac{2 \lambda}{\lambda-1}$
$\Rightarrow \frac{3 \sin A-4 \sin ^{3} A}{\sin A}=\frac{2 \lambda}{\lambda-1} \Rightarrow 3-4 \sin ^{2} A=\frac{2 \lambda}{\lambda-1}$
or, $4 \sin ^{2} A=\frac{\lambda-3}{\lambda-1}$ as $0 \leq \sin ^{2} \theta \leq 1$
$\Rightarrow 0<\frac{\lambda-3}{\lambda-1}<4($ as $\sin A \neq 0$ or 1$)$
$\Rightarrow \frac{\lambda-3}{\lambda-1}>0$ and $\frac{\lambda-3}{\lambda-1}<4 \Rightarrow \frac{3 \lambda-1}{\lambda-1}>0$

$\Rightarrow \lambda \in(-\infty, 1) \cup(3, \infty) \ldots$ (ii)\& $\lambda \in\left(-4, \frac{1}{3}\right) \cup(1, \infty)$.
From (ii) and (iii) we get, $\lambda<1 / 3$ and $\lambda>3$.
17. (a, c) : Given, $x+y=\frac{\pi}{2}$
and $\sin x+\sin y=\sqrt{2}$
$\Rightarrow 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)=\sqrt{2}$
$\Rightarrow \cos \left(\frac{x-y}{2}\right)=1$
$\Rightarrow x-y=2 \cdot 2 k \pi \Rightarrow x-y=4 k \pi, k \in I$
Solving (i) and (ii), we get
$x=2 k \pi+\frac{\pi}{4}$ and $y=\frac{\pi}{4}-2 k \pi, k \in I$
18. (c)
19. (b)
20. (d)
21. (a) : $\cot ^{-1} 3+\cot ^{-1} 7+\cot ^{-1} 13+\cot ^{-1} 21+\cot ^{-1} 31$

We can write the general form of the series $3,7,13$, $21,31, \ldots$. by successive order of difference,
$S_{n}=3+7+13+21+31+\ldots .+t_{n}$
$S_{n}=3+7+13+\ldots .+t_{n-1}+t_{n}$
On subtracting we get
$t_{n}=3+\left(4+6+\ldots .+t_{n-1}\right)=3+(n-1)(n+2)$
$t_{n}=1+n+n^{2}$
Now, $\cot ^{-1} 3+\cot ^{-1} 7+\cot ^{-1} 13+\ldots$. . up to infinite terms

$$
\begin{aligned}
& =\operatorname{Lt} \sum_{n \rightarrow \infty}^{n} \cot ^{-1}\left(1+r+r^{2}\right)=\mathrm{Lt} \sum_{n \rightarrow \infty}^{n} \tan ^{-1}\left(\frac{1}{1+r(r+1)}\right) \\
& =\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{(r+1)-r}{1+r(r+1)}\right) \\
& =\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n}\left[\tan ^{-1}(r+1)-\tan ^{-1} r\right] \\
& =\underset{n \rightarrow \infty}{\operatorname{Lt}}\left[\tan ^{-1}(n+1)-\tan ^{-1} 1\right]=\tan ^{-1} \infty-\tan ^{-1} 1=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned}
$$

22. (d) : Given series is

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2}{2+1^{2}+1^{4}}\right)+\tan ^{-1}\left(\frac{4}{2+2^{2}+2^{4}}\right) \\
& =\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2 r}{2+r^{2}+r^{4}}\right) \\
& =\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left[\frac{6}{2+3^{2}+3^{4}}\right)+\ldots . . \infty \\
& 1+\left(r^{2}+r+1\right)-\left(r^{2}-r+1\right)\left(r^{2}-r+1\right) \\
& \hline
\end{aligned}
$$

$=\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n}\left[\tan ^{-1}\left(r^{2}+r+1\right)-\tan ^{-1}\left(r^{2}-r+1\right)\right]$
$=$ Lt $\left(\tan ^{-1} 3-\tan ^{-1} 1\right)+\left(\tan ^{-1} 7-\tan ^{-1} 3\right)+\left(\tan ^{-1} 13-\tan ^{-1} 7\right)$
$n \rightarrow \infty \quad+\ldots .+\left(\tan ^{-1}\left(n^{2}+n+1\right)-\tan ^{-1}\left(n^{2}-n+1\right)\right)$
$=\operatorname{Lt}\left[\tan ^{-1}\left(n^{2}+n+1\right)-\tan ^{-1} 1\right]$
$=\tan ^{-1} \infty-\tan ^{-1} 1=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$
or, $\underset{n \rightarrow \infty}{\operatorname{Lt}} \tan ^{-1}\left(\frac{n^{2}+n}{2+n^{2}+n}\right)=\underset{n \rightarrow \infty}{\text { Lt }} \tan ^{-1}\left(\frac{1+1 / n}{\frac{2}{n}+1+\frac{1}{n}}\right)$
$=\tan ^{-1} 1=\frac{\pi}{4}$
23. (b) : Given infinite series is
$\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{2}{9}\right)+\tan ^{-1}\left(\frac{4}{33}\right)+\tan ^{-1}\left(\frac{8}{129}\right)+\ldots \infty$
\therefore General term of $(*)$ is $\tan ^{-1}\left(\frac{2^{r-1}}{1+2^{2 r-1}}\right)$
\therefore Sum of $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{2}{9}\right)+\tan ^{-1}\left(\frac{4}{33}\right)$
$+\tan ^{-1}\left(\frac{8}{129}\right)+\ldots . . \infty=\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r-1}}{1+2^{2 r-1}}\right)$
$=\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r-1}}{1+2^{r} \cdot 2^{r-1}}\right)$
$=\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r}-2^{r-1}}{1+2^{r} \cdot 2^{r-1}}\right)$
$=\operatorname{Lt}_{n \rightarrow \infty} \sum_{r=1}^{n}\left[\tan ^{-1}\left(2^{r}\right)-\tan ^{-1}\left(2^{r-1}\right)\right]$
$=\underset{n \rightarrow \infty}{\operatorname{Lt}}\left(\tan ^{-1} 2^{n}-\tan ^{-1} 2^{\circ}\right)$
(by putting $r=1,2, \ldots . n$ and simplifying)
$=\tan ^{-1} 2^{\infty}-\tan ^{-1} 1=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$
24. (d)
25. (c)
26. (b)
27. $\mathrm{A} \rightarrow 4, \mathrm{~B} \rightarrow 3, \mathrm{C} \rightarrow 2, \mathrm{D} \rightarrow 1$
A. $\alpha=6^{\circ} \therefore 5 \alpha=30^{\circ} \Rightarrow \cos 5 \alpha=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\therefore \cos 5 \alpha=\cos (2 \alpha+3 \alpha)=\cos 2 \alpha \cos 3 \alpha-\sin 2 \alpha \sin 3 \alpha$
$\Rightarrow \cos 30^{\circ}=16 \cos ^{5} \alpha-20 \cos ^{3} \alpha+5 \cos \alpha$
$\Rightarrow \frac{\sqrt{3}}{2}=16 x^{5}-20 x^{3}+5 x$
$\Rightarrow 32 x^{5}-40 x^{3}+10 x-\sqrt{3}=0$ where $x=\cos \alpha=\cos 6^{\circ}$
B. Let $\alpha=10^{\circ} \Rightarrow 6 \alpha=60^{\circ}$
$\therefore \quad \cos 6 \alpha=\frac{1}{2}$ or $\cos 3(2 \alpha)=\frac{1}{2}$
$\Rightarrow 4 \cos ^{3} 2 \alpha-3 \cos 2 \alpha=\frac{1}{2}$
$\Rightarrow 4\left(2 \cos ^{2} \alpha-1\right)^{3}-3\left(2 \cos ^{2} \alpha-1\right)=\frac{1}{2}$
$\Rightarrow 8\left(2 \cos ^{2} \alpha-1\right)^{3}-6\left(2 \cos ^{2} \alpha-1\right)-1=0$
$\Rightarrow 8\left(2 \cdot \frac{x^{2}}{4}-1\right)^{3}-6\left(2 \cdot \frac{x^{2}}{4}-1\right)=1$
(By putting $2 \cos \alpha=x$)
$\Rightarrow\left(x^{2}-2\right)^{3}-3\left(x^{2}-2\right)=1$
$\Rightarrow x^{6}-6 x^{4}+9 x^{2}-3=0$ where $x=2 \cos 10^{\circ}$
C. Let $\alpha=15^{\circ} \therefore 3 \alpha=45^{\circ}$
$\therefore \tan 3 \alpha=\tan 45^{\circ}=1$
$\Rightarrow 3 \tan \alpha-\tan ^{3} \alpha=1-3 \tan ^{2} \alpha$
$\Rightarrow \tan ^{3} \alpha-3 \tan ^{2} \alpha-3 \tan \alpha+1=0$
$\Rightarrow x^{3}-3 x^{2}-3 x+1=0$ where $x=\tan \alpha=\tan 15^{\circ}$
D. Let $\alpha=20^{\circ} \therefore 3 \alpha=60^{\circ} \Rightarrow \cos 3 \alpha=\cos 60^{\circ}=\frac{1}{2}$
$\Rightarrow \quad \cos 3 \alpha=\frac{1}{2}$
$\Rightarrow 4 \cos ^{3} \alpha-3 \cos \alpha=\frac{1}{2}$ or $8 \cos ^{3} \alpha-6 \cos \alpha-1=0$
or $8 x^{3}-6 x-1=0$ where $x=\cos 20^{\circ}$
28. $\mathrm{A} \rightarrow 3, \mathrm{~B} \rightarrow 1, \mathrm{C} \rightarrow 4, \mathrm{D} \rightarrow 2$
A. $\cos ^{-1}\left(\frac{3}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{2 / 3}{1-\frac{1}{9}}\right)$
$=\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{2}{3} \times \frac{9}{8}\right)$
$\therefore \cos ^{-1}\left(\frac{3}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{3}{4}\right)$
$=\tan ^{-1}\left(\frac{4}{3}\right)+\cot ^{-1}\left(\frac{4}{3}\right)=\frac{\pi}{2}$
$\left(\right.$ Using $\left.\tan ^{-1} \alpha+\cot ^{-1} \alpha=\frac{\pi}{2}\right)$
B. $\cos ^{-1}\left(\frac{5}{13}\right)+\sin ^{-1}\left(\frac{3}{5}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$

$$
=\tan ^{-1}\left(\frac{12}{5}\right)+\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{63}{16}\right)
$$

$$
=\left[\pi+\tan ^{-1}\left(\frac{\frac{12}{5}+\frac{3}{4}}{1-\frac{36}{20}}\right)\right]+\tan ^{-1}\left(\frac{63}{16}\right)
$$

$$
\left.\begin{array}{ll}
\left(\begin{array}{ll}
\text { using } \tan ^{-1} x+\tan ^{-1} y=\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right)
\end{array}\right) & \Rightarrow \frac{169}{9}-(A E)^{2}=\frac{4 \times 40}{5 \times 3}=\frac{32}{3} \\
\text { if } x, y>0 \text { and } x y>1
\end{array}\right) \Rightarrow(A E)^{2}=\frac{169}{9}-\frac{32}{3}=\frac{169-}{9} 9+\tan ^{-1}\left(\frac{63}{-16}\right)+\tan ^{-1}\left(\frac{63}{16}\right) \quad \begin{array}{ll}
9
\end{array}
$$

$$
=\pi-\tan ^{-1}\left(\frac{63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)=\pi
$$

C. $\sin ^{-1}\left(\frac{1}{5 \sqrt{2}}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)$
$=\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{3}{4}\right)=\tan ^{-1}\left(\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7} \cdot \frac{3}{4}}\right)$
$=\tan ^{-1}\left(\frac{25}{25}\right)$
$=\tan ^{-1}(1)=\tan ^{-1} \tan \left(\frac{\pi}{4}\right)=\frac{\pi}{4}$
D. $\therefore A=\tan ^{-1}\left(\frac{x \sqrt{3}}{2 \lambda-x}\right), B=\tan ^{-1}\left(\frac{2 x-\lambda}{\lambda \sqrt{3}}\right)$
$\therefore \tan (A-B)=\frac{\frac{x \sqrt{3}}{2 \lambda-x}-\frac{(2 x-\lambda)}{\lambda \sqrt{3}}}{1+\frac{x \sqrt{3}}{2 \lambda-x} \cdot \frac{2 x-\lambda}{\lambda \sqrt{3}}}$

$$
\begin{aligned}
& \frac{3 \lambda x+(2 x-\lambda)(x-2 \lambda)}{\sqrt{3}}[\lambda(2 \lambda-x)+x(2 x-\lambda)] \\
= & \frac{1}{\sqrt{3}}\left(\frac{2 x^{2}-(5 \lambda x-3 \lambda x)+2 \lambda^{2}}{2 x^{2}-2 \lambda x+2 \lambda^{2}}\right)=\frac{1}{\sqrt{3}}
\end{aligned}
$$

$\therefore \tan (A-B)=\tan \frac{\pi}{6} \Rightarrow A-B=\frac{\pi}{6}$
29. (3) : As the side of $\triangle A B C$ are $A B=3, B C=5, C A=4$
\therefore Triangle $A B C$ is right angle Δ at A, i.e., $\angle B A C=90^{\circ}$
In $\triangle C A E$, let $\angle C A E=\alpha$ and $C E=\frac{5}{3}$
we have $\cos C=\frac{4^{2}+\left(\frac{5}{3}\right)^{2}-(A E)^{2}}{16+\frac{25}{9}-(A E)^{2}}$
we have $\cos C=\frac{(3)}{2 \cdot 4 \cdot\left(\frac{5}{3}\right)}=\frac{9}{\frac{40}{3}}$
$\therefore \frac{4}{5}=\frac{\frac{169}{9}-(A E)^{2}}{\frac{40}{3}}$

Again in $\triangle C A E$ we have
$\cos \alpha=\frac{A C^{2}+(A E)^{2}-\left(\frac{5}{3}\right)^{2}}{2 \cdot 4 A C}=\frac{16+\frac{73}{9}-\frac{25}{9}}{8 \times \frac{\sqrt{73}}{3}}$
$\Rightarrow \cos \alpha=\frac{144+73-25}{9} \times \frac{3}{8 \sqrt{73}}=\frac{8}{\sqrt{73}} \Rightarrow \sec \alpha=\frac{\sqrt{73}}{8}$
Now $\tan ^{2} \alpha=\sec ^{2} \alpha-1=\frac{73}{64}-1=\frac{9}{64}$
$\therefore \tan \alpha=\frac{3}{8}$ i.e., $\tan \angle C A E=\frac{3}{8}$
$\Rightarrow 8 \tan \angle C A E=3$
30. (3) : Let $A B C D$ be the cyclic quadrilateral in which
$A B=2$ and $B C=5$ and $\angle A B C=60^{\circ}$
$\therefore \quad \angle A D C=180^{\circ}-60^{\circ}=120^{\circ}$
$\angle A B C=60^{\circ} \therefore \angle A D C=180^{\circ}-60^{\circ}=120^{\circ}$
Area of quadrilateral $A B C D=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A C D)$
$\Rightarrow \frac{1}{2} A B \times B C \sin 60^{\circ}+\frac{1}{2} C D \times D A \sin 120^{\circ}=4 \sqrt{3}$
$\Rightarrow \frac{1}{2} \times 2 \times 5 \times \frac{\sqrt{3}}{2}+\frac{1}{2} x y\left(\frac{\sqrt{3}}{2}\right)=4 \sqrt{3}$
where $C D=x, A D=y$
$\Rightarrow x y=6$
From $\triangle A B C$ we get

$$
\begin{align*}
& \cos 60^{\circ}=\frac{(A B)^{2}+(B C)^{2}-(A C)^{2}}{2 A B \cdot B C} \tag{i}\\
& \Rightarrow(A C)^{2}=(A B)^{2}+(B C)^{2}-2(A B)(B C)\left(\frac{1}{2}\right) \\
& \quad=4+25-2 \times 5 \therefore \quad \therefore(A C)^{2}=19 \tag{ii}
\end{align*}
$$

Again from $\triangle A C D$, we get
$(A C)^{2}=(C D)^{2}+(D A)^{2}-2 C D \times D A \cos 120^{\circ}$
$(A C)^{2}=x^{2}+y^{2}-2 x y\left(-\frac{1}{2}\right)=x^{2}+y^{2}+x y$
$=x^{2}+y^{2}+6 \quad($ using (i))
From (ii) and (iii) we have
$x^{2}+y^{2}+6=19 \Rightarrow x^{2}+y^{2}=13$
$\Rightarrow \quad x=2$ then $y=3$ and $x=3$ then $y=2$
$\therefore x=2,3$ and $y=3,2$
\therefore Length of larger side of the quadrilateral from the rest sides is 3
31. (1)

Challenging

1. A plane π is given and on one side of the plane three non-collinear points A, B, C such that the plane determined by them is not parallel to π. Three arbitrary points $A^{\prime}, B^{\prime}, C^{\prime}$ in π are selected. Let L, M, N be the midpoints of $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ and let G be the centroid of $\triangle L M N$. The locus of G as A^{\prime}, B^{\prime}, C^{\prime} varies across π is
(a) a plane parallel to π
(b) a plane perpendicular to π
(c) a line parallel to π
(d) a line perpendicular to π
2. Consider the two statements regarding a tetrahedron $A B C S$
S_{1} : ABCS has 5 different spheres that touch all 6 lines determined by its edges.
$S_{2}: A B C S$ is a regular tetrahedron. Then
(a) $S_{1} \Rightarrow S_{2}$
(b) $S_{2} \Rightarrow S_{1}$
(c) $S_{1} \Leftrightarrow S_{2}$
(d) $S_{2} \nRightarrow S_{1}$
3. If all the angles of a convex n-gon are equal and the lengths of consecutive edges $a_{1}, a_{2}, \ldots . ., a_{n}$ satisfy $a_{1} \geq a_{2} \geq \ldots . . \geq a_{n}$ then
(a) $a_{1}=a_{n}$
(b) $a_{2}=2 a_{n-1}$
(c) $a_{3}=a_{n-2}+a_{n-1}$
(d) $a_{3}=a_{n-2}-a_{n-1}$
4. Consider a tetrahedron $A B C D$, with O be the centre of the circumsphere of regular tetrahedron $A B C D$ and let P be any point. Let $T=O A+O B+O C+O D$ and $Y=P A+P B+P C+P D$, then
(a) $T>Y$
(b) $T<Y$
(c) $T=Y$
(d) $T=2 Y$
5. Exactly one side of a tetrahedron is of length greater than 1 , then max. volume of the tetrahedron is
(a) 1
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) $\frac{1}{8}$
6. In any tetrahedron there is a vertex such that the lengths of its sides through that vertex are sides of a triangle. This statement is
(a) always true
(b) always false
(c) true only in regular tetrahedrons
(d) not true in general
7. The condition on ' a ' such that there exists a tetrahedron of whose one edge has length ' a ' and the other 5 edges have length 1 is
(a) $a<2$
(b) $a<\sqrt{3}$
(c) $a<2 \sqrt{2}$
(d) $a<2 \sqrt{3}$
8. Vertex A of the acute triangle $A B C$ is equidistant from the circumcentre O and orthocentre H. The possible value of $\angle A$ is
(a) 30°
(b) 60°
(c) 75°
(d) 90°
9. The lengths of two opposite edges of a tetrahedron are 12 and 15 units, their shortest distance is 10 units. If the volume of the tetrahedron is 200 cubic units then the angle between the two edge is
(a) $\sin ^{-1}\left(\frac{1}{2}\right)$
(b) $\sin ^{-1}\left(\frac{2}{3}\right)$
(c) $\sin ^{-1}\left(\frac{3}{4}\right)$
(d) $\sin ^{-1}\left(\frac{4}{5}\right)$
10. The plane $l x+m y+n z=p$ intersects co-ordinate axes in A, B and C respectively. If area of $\triangle A B C$ is Δ then
(a) $p^{2} \leq \frac{2 \Delta}{3 \sqrt{3}}$
(b) $p^{2} \geq \frac{2 \Delta}{3 \sqrt{3}}$
(c) $p^{2}>\frac{2 \Delta}{3 \sqrt{3}}$
(d) $p^{2}<\frac{2 \Delta}{3 \sqrt{3}}$
11. $\vec{a}, \vec{b}, \vec{c}$ are three non-zero non-coplanar vectors with fixed magnitudes. Angles between any of the vector with the normal of the plane containing other two is α. Volume is T and surface area is Y, then $\frac{2}{|\cos \alpha|} \cdot\left[\frac{1}{|\vec{a}|}+\frac{1}{|\vec{b}|}+\frac{1}{|\vec{c}|}\right]=$
(a) $\frac{Y}{T}$
(b) $\frac{T}{Y}$
(c) $\frac{2 T}{Y}$
(d) $\frac{2 Y}{T}$
12. The shortest distance between the lines $2 x+y+z-1=0=3 x+y+2 z-2$ and $x=y=z$ is
(a) $\frac{1}{\sqrt{2}}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{1}{\sqrt{4}}$
(d) $\frac{1}{\sqrt{5}}$
13. Consider the four coplanar points $A(\vec{O}), B(3 \hat{i}+f(t) \hat{j}+\hat{k}), \quad C\left(2 \hat{i}+f^{\prime}(t) \hat{j}+2 \hat{k}\right)$ and $D(\hat{i}+\hat{j})$, then $f(x)$ is of the form
(a) $2+\lambda e^{2 x}$
(b) $2+\lambda \log (2 x)$
(c) λe^{x}
(d) $\lambda \log x$
14. Let \vec{a} be a vector or rectangular co-ordinate system with sloping angle 60°. Suppose that $|\vec{a}-\hat{i}|$ is geometric mean of $|\vec{a}|$ and $|\vec{a}-2 \hat{i}|$, then $|\vec{a}|=$
(a) $\sqrt{2}$
(b) $\sqrt{2}+1$
(c) $\sqrt{2}-1$
(d) 2
15. The volume of the solid enclosed by the planes $|x|+|y|+|z|=1$ is
(a) $\frac{1}{3}$ cubic units
(b) $\frac{2}{3}$ cubic units
(c) $\frac{3}{3}$ cubic units
(d) $\frac{4}{3}$ cubic units

SOLUTIONS

1. (a) : Let $d(P)$ denote the distance of a point P from π, with P being on the same side of π as A, B, C. Let G_{1} be the fixed centroid of $\triangle A B C$ and G_{1}^{\prime} be the centroid of $\Delta A^{\prime} B^{\prime} C^{\prime}$. It is easy to prove that G is the midpoint of $G_{1} G_{1}^{\prime}$. Hence, varying G_{1}^{\prime} across π, we have the locus of G as the plane π^{\prime} parallel to π such that

$$
P \in \pi^{\prime} \Rightarrow d(P)=\frac{d\left(G_{1}\right)}{2}=\frac{d(A)+d(B)+d(C)}{6}
$$

2. (c) : The spheres are arranged in similar way, where we have one in-circle and 3 ex-circles. Here, we have one in-sphere and 4 ex-spheres. For the in-sphere, we have $S A+B C=S B+C A=S C+A B$ and for the ex-sphere opposite S, we have $S A-B C=S B-C A=$ $S C-A B$. Hence $S A=S B=S C$ and $A B=B C=C A$. By symmetry, $A B=A C=S A$, i.e. regular tetrahedron.
3. (a) : Let $\overrightarrow{O A}_{1}, \overrightarrow{O A}_{2}, \ldots, \overrightarrow{O A}_{n}$ be the vectors corresponding to edges $a_{1}, a_{2}, \ldots, a_{n}$ of the polygon. By the conditions in the question,

$$
\overrightarrow{O A}_{1}+\overrightarrow{O A}_{2}+\ldots+\overrightarrow{O A}_{n}=\vec{O}
$$

$$
\angle A_{1} O A_{2}=\angle A_{2} O A_{3}=\ldots=\frac{2 \pi}{n}
$$

and $\overrightarrow{O A}_{1} \geq \overrightarrow{O A}_{2} \geq \overrightarrow{O A}_{3} \geq \ldots \geq \overrightarrow{O A}_{n}$.
Let l be a line through O, perpendicular to $O A_{n}$ and B_{1}, B_{2}, \ldots, B_{n-1} be the projections of $A_{1}, A_{2}, \ldots, A_{n-1}$ on l. By the assumptions, $\sum \overrightarrow{O B}_{i}=\vec{O}$.

But, $\overrightarrow{O B}_{i} \leq \overrightarrow{O B}_{n-i}$ for all $i \leq \frac{n}{2}$,
because all the sums $\overrightarrow{O B}_{i}+\overrightarrow{O B}_{n-i}$ lies on the same side of O. Hence, all these sums must be \vec{O}.
i.e. $O A_{i}=O A_{n-i}$.
4. (b) : Let $O(0,0,0), A(-a,-a,-a), B(-a, a, a)$, $C(a,-a, a)$ and $D(a, a,-a)$. For a point $P(x, y, z)$ by using RMS \geq AM.
We have, $P A+P B+P C+P D$ does not exceed

$$
2 \sqrt{P A^{2}+P B^{2}+P C^{2}+P D^{2}} .
$$

Now, $P A^{2}+P B^{2}+P C^{2}+P D^{2}$
$=4\left(x^{2}+y^{2}+z^{2}\right)+12 a^{2}$

$$
\geq 12 a^{2}=O A^{2}+O B^{2}+O C^{2}+O D^{2}
$$

Hence, $P A+P B+P C+P D$

$$
\begin{aligned}
& \geq 2 \sqrt{O A^{2}+O B^{2}+O C^{2}+O D^{2}} \\
& =O A+O B+O C+O D
\end{aligned}
$$

5. (d): Suppose $C D$ is the longest edge of the tetrahedron $A B C D$. Let $A B=a, C K$ and $D L$ be the altitudes of $\triangle A B C$ and $\triangle A B D$ respectively. Let $D M$ be the altitude of tetrahedron.
Then in right triangle $A K C, C K^{2} \leq 1-\frac{a^{2}}{4}$.
Similarly, $D L^{2} \leq 1-\frac{a^{2}}{4}$.
Since $D M \leq D L$, so $D M^{2} \leq 1-\frac{a^{2}}{4}$
Hence, volume $V=\frac{1}{3} \cdot[D M]\left[\frac{1}{2} \cdot a \cdot C K\right] \leq \frac{1}{6} \cdot a \cdot\left(1-\frac{a^{2}}{4}\right)$

$$
\leq \frac{1}{24}(2+a)\left[1-(a-1)^{2}\right] \leq \frac{1}{24} \cdot 3 \cdot 1=\frac{1}{8}
$$

6. (a) : Let $A B$ be the largest edge of the tetrahedron $A B C D$. Then $A B \geq A C+A D$ and $A B \geq B C+B D$.
$\Rightarrow 2 A B \geq A C+A D+B C+B D$
\Rightarrow either $A B \geq A C+B C$ or $A B \geq A D+B D$
Contradicting the triangle inequality. Hence, the three edges coming out of atleast one of the vertices A and B form a triangle.

Get a taste of competition early on

Inviting JEE aspirants to participate in SOF International Mathematics Olympiad
1 MO

SOF INTERNATIONAL MATHEMATICS OLYMPIAD
 DEC. 5 \& DEC. 14

Millions of students compete in the SOF Olympiads. Can there be a better, global, competitive platform for you to assess your readiness for success in JEE? To participate, all you need to do is contact your

School Principal or your school's SOF Olympiads Coordinator immediately. For more info, log on to sofworld.org.

Top rank at the International level gets you a Gold medal and prize money - a cool Rs 50,000 plus exciting gifts. Top rank at the zone level gets you a Gold medal and prize money of Rs 5,000 plus gifts. Many more prizes too, visit sofworld.org for details. Or just scan the QR code with your smartphone or tablet.
7. (b) : Let $A B=a$ and remaining edges have length 1. Let M be the midpoint of $C D$. Then since, $C D A$ and $B C D$ are equilateral triangles, we have $A M=B M$ $=\sqrt{3} / 2$ and so $A B<A M+B M$ gives $a<\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}$ i.e., $a<\sqrt{3}$
8. (b) : Let origin be the circumcentre, then according to question,

$$
|\vec{A}-\overrightarrow{0}|=|\vec{A}|=|\vec{A}-\vec{H}| \text { and }
$$

circumradius, $R=|\vec{A}|=|\vec{B}|=|\vec{C}|$ and $\vec{H}=\vec{A}+\vec{B}+\vec{C}$.
Let $a=|\vec{B}-\vec{C}|$, then $R^{2}=|\vec{A}|^{2}=|\vec{A}-\vec{H}|^{2}=|\vec{B}+\vec{C}|^{2}$
So, $R^{2}=4 R^{2}-a^{2}$ i.e. $\frac{a}{R}=\sqrt{3} \Rightarrow \sin A=\frac{\sqrt{3}}{2}$
by using sine rule.
Hence, $\angle A=60^{\circ}$
9. (b) : Use, volume $=\frac{1}{6} a b d \sin \theta$
10. (a) : $\Delta^{2}=\Delta_{x}^{2}+\Delta_{y}^{2}+\Delta_{z}^{2}$
$=\frac{1}{4} \cdot\left[\left(\frac{p^{2}}{l m}\right)^{2}+\left(\frac{p^{2}}{m n}\right)^{2}+\left(\frac{p^{2}}{l n}\right)^{2}\right]=\frac{p^{4}}{4 l^{2} m^{2} n^{2}}$
i.e. $\Delta=\frac{p^{2}}{2 l m n}$.

Now, A.M. \geq G.M. gives
$\frac{l^{2}+m^{2}+n^{2}}{3} \geq(l m n)^{2 / 3}$ i.e. $\frac{1}{3 \sqrt{3}} \geq \frac{p^{2}}{2 \Delta}$
Hence, $p^{2} \leq \frac{2 \Delta}{3 \sqrt{3}}$, with equality occurring at $l=m=n$.
11. (a) : $T=|\vec{a} \cdot(\vec{b} \times \vec{c})|=|\vec{b} \cdot(\vec{c} \times \vec{a})|=|\vec{c} \cdot(\vec{a} \times \vec{b})|$
$T=\left|\vec{a}\|\vec{b}\| \vec{c}\|\cos \alpha\| \sin \theta_{1}\right|$
$=|\vec{a}||\vec{b}||\vec{c}||\cos \alpha|\left|\sin \theta_{2}\right|=|\vec{a}||\vec{b}||\vec{c}||\cos \alpha|\left|\sin \theta_{3}\right|$
and surface area $Y=2(|\vec{a} \times \vec{b}|+|\vec{b} \times \vec{c}|+|\vec{c} \times \vec{a}|)$
i.e., $Y=2\left(|\vec{a}||\vec{b}|\left|\sin \theta_{1}\right|+|\vec{b}||\vec{c}|\left|\sin \theta_{2}\right|+|\vec{c}||\vec{a}|\left|\sin \theta_{3}\right|\right)$
12. (a) : Any plane passing through the first line can be taken as $2 x+y+z-1+\lambda(3 x+y+2 z-2)=0$. If this is parallel to the second line then
$(2+3 \lambda) \cdot 1+(1+\lambda) \cdot 1+(1+2 \lambda) \cdot 1=0$
$\Rightarrow \lambda=\frac{-2}{3}$
So, plane is $y-z+1=0$.
Distance from $(0,0,0)$ is $\frac{1}{\sqrt{2}}$.
13. (a): As A, B, C, D are coplanar $\therefore[\overrightarrow{A B} \overrightarrow{A C} \overrightarrow{A D}]=0$ Simplifying this gives, $f^{\prime}(t)-2 f(t)=-4$
i.e., $f(x)=2+\lambda e^{2 x}, \lambda \in R$.
14. (c) : Let $\vec{a}=x \hat{i}+\sqrt{3} x \hat{j}$.
$|\vec{a}|=2 x, x>0$
Now A.T.Q., $|\vec{a}||\vec{a}-2 \hat{i}|=|\vec{a}-\hat{i}|^{2}$
$\Rightarrow 2 x \cdot \sqrt{(x-2)^{2}+3 x^{2}}=(x-1)^{2}+\left(3 x^{2}\right)$
Simplifying $x=\frac{1}{2}(\sqrt{2}-1)$
15. (d) : Let $A(1,0,0), B(0,1,0), C(0,0,1)$, and $O(0,0,0)$
Reqd. volume $=8 \times$ vol. of tetrahedran $O A B C$
$=8 \times \frac{1}{6}[\overrightarrow{O A} \overrightarrow{O B} \overrightarrow{O C}]$
where, $\overline{O A}=\hat{i}, \overline{O B}=\hat{j}, \overline{O C}=\hat{k}$
Hence, reqd. vol. $=\frac{4}{3}[\hat{i} \hat{j} \hat{k}]=\frac{4}{3}$ cubic units

Your favourite MTG Books/Magazines available in

PUNJAB at

- Sunder Book Depot - Amritsar

Ph: 0183-2544491, 2224884, 5059033; Mob: 9814074241

- Malhotra Book Depot - Amritsar Mob: 8000300086, 9646537157, 9888733844
- Navchatan Book Depot - Barnala

Mob: 97790220692, 9417906880, 9779090135, 9876147263, 9779050692

- Mehta Book Centre - Bathinda Mob: 9876029048, 9464158497
- Goyal Traders Book Sellers - Bathinda

Ph: 0164-2239632; Mob: 9417924911, 9814485520

- Aggarwal Book Centre - Bathinda Ph: 0164-2236042; Mob: 9417816439
- S M Enterprises - Bathinda Ph: 0164-2240450; Mob: 7508622881, 9417363362
- Hans Raj Dogra \& Sons - Gurdaspur Mob: 9872032357
- Gupta Technical \& Computer Book Shop - Jalandhar Ph: 0181-2200397; Mob: 9915001916, 9779981081
- Cheap Book Store - Jalandhar Mob: 9872223458
- City Book Shop - Jalandhar Ph: 0181-2620800; Mob: 9417440753
- Deepak Book Distributiors - Jalandhar

Ph: 0181-2222131; Mob: 8528391133, 9872328131

- Kiran Book Shop - Jalandhar Mob: 9876631526, 9779223883,9872377808
- Amit Book Depot - Ludhiana

Ph: 0161-5022930, 5022930; Mob: 9815323429, 9815807871

- Bhatia Book Centre - Ludhiana Ph: 0161-2747713; Mob: 9815277131
- Chabra Book Depot - Ludhiana Ph: 0161-6900900, 2405427; Mob: 9501080070
- Gupta Book World - Ludhiana

Ph: 0161-2446870, 2409097, 3942992; Mob: 9463027555

- Khanna Book Depot - Nabha Ph: 01765-220095; Mob: 9814093193, 9814309320
- Goel \& Sons Book Depot - Patiala Ph: 0172-2213643, 2202045; Mob: 9914096991
- Adarsh Pustak Bhandar - Patiala

Ph: 0175-2311430; Mob: 9814347613, 9815651737

- Pepsu Book Depot - Patiala Ph: 0175-2214696; Mob: 9814041623, 9914903305

Visit "MTG IN YOUR CITY" on www.mtg.in to locate nearest book seller OR write to info@mtg.in OR call

0124-6601200 for further assistance.

Time: 1 hr 15 min.

The entire syllabus of Mathematics of JEE MAIN is being divided into eight units, on each unit there will be a Mock Test Paper (MTP) which will be published in the subsequent issues. The syllabus for module break-up is given below:

Unit No. 4	Topic	
	Mathematical Induction	Principle of mathematical induction and its simple applications
	Binomial Theorem \& it's Simple Applications	Binomial Theorem of positive integral index, general term and middle term, properties of Binomial coefficients and simple applications
	Sequences and Series	Definition of series and sequence. Arithmetic, geometric and harmonic progressions. Arithmetic, geometric \& harmonic means between two given numbers, relation between A.M.,G.M. and H.M. Sum up to n terms of special series: $\sum \mathrm{n}, \sum \mathrm{n}^{2}, \sum \mathrm{n}^{3}$. Arithmetic- Geometric progression.
	Co-ordinate geometry-2D	Conic Sections: Sections of cones, equation conic sections(parabola, ellipse and hyperbola in standard forms, condition for $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ to be a tangent and point(s) of tangency

1. Let $P(n): 1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}<2-\frac{1}{n}$ is true for
(a) $\forall n$
(b) for $n=1$
(c) $n>1 \forall n \in N$
(d) none of these
2. Let $P(n)$ be the statement represent the sum of three successive natural numbers $\forall n \in N$, then the smallest value of n to which $P(n)$ is divisible by 9 is
(a) 1
(b) 3 !
(c) 3
(d) 9 !
3. Let $P(n)=5^{n}-2^{n}, P(n)$ is divisible by 3λ where λ and n both are odd positive integers then the least value of n and λ will be
(a) 13
(b) 11
(c) 1
(d) 5
4. Middle term in the expansion of $\left(1-3 x+3 x^{2}-x^{3}\right)^{2 n}$ is
(a) $\frac{6 n!}{3 n!3 n!} x^{n}$
(b) $\frac{6 n!}{3 n!} x^{3 n}$
(c) $\frac{6 n!}{3 n!3 n!}(-x)^{3 n}$
(d) none of these
5. If $\left(1+x+x^{2}\right)^{n}=b_{0}+b_{1} x+b_{2} x^{2}+\ldots .+b_{2 n} x^{2 n}$, then $b_{0}+b_{2}+b_{4}+\ldots .+b_{2 n}$ equals
(a) $\frac{3^{n}-1}{2}$
(b) $3^{n}+\frac{1}{2}$
(c) $\frac{3^{n}+1}{2}$
(d) none of these.
6. Number of irrational terms in the expansion of $(\sqrt[5]{2}+\sqrt[10]{3})^{60}$ are
(a) 54
(b) 61
(c) 30
(d) 31
7. The range of the value of the term independent of x in the expansion of $\left(x \sin ^{-1} \alpha+\frac{\cos ^{-1} \alpha}{x}\right)^{10}$, $\alpha \in[-1,1]$ is
(a) $[1,2]$
(b) $(1,2)$
(c) $\left(\frac{{ }^{10} C_{5} \pi^{2}}{2^{20}}, \frac{-{ }^{10} C_{5} \pi^{2}}{2^{5}}\right)$
(d) $\left(\frac{-{ }^{10} C_{5} \pi^{10}}{2^{5}}, \frac{{ }^{10} C_{5} \pi^{10}}{2^{20}}\right)$
8. If $C_{0}, C_{1}, C_{2}, C_{3}, \ldots ., C_{n}$ denotes the binomial coefficients in the expansion of $(1+x)^{n}$, then $\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\ldots+n \frac{C_{n}}{C_{n-1}}=$
(a) $\frac{n}{2}$
(b) $\frac{n+1}{2}$
(c) $\frac{n(n-1)}{2}$
(d) $\frac{n(n+1)}{2}$
9. If the third term in the expansion of $\left(\frac{1}{x}+x^{\log _{10} x}\right)^{5}$ is 1,000 , then $x=$
(a) 10^{2}
(b) 10^{3}
(c) 10
(d) none of these
10. The greatest term in the expansion of $(2 x-3 y)^{28}$ when $x=9, y=4$ is
(a) $14^{\text {th }}$
(b) $15^{\text {th }}$
(c) $14^{\text {th }}, 15^{\text {th }}$
(d) $12^{\text {th }}$
11. If the sum of n terms of an A.P. is $c n(n-1)$ where $n \neq 0$, then the sum of the squares of these terms is
(a) $c^{2} n^{2}(n+1)^{2}$
(b) $\frac{2}{3} c^{2} n(n-1)(2 n-1)$
(c) $\frac{2}{3} c^{2} n(n+1)(2 n+1)$
(d) $\frac{1}{3} c^{2} n^{2}$
12. The interior angles of a polygon are in A.P. with the smallest angle and common difference being respectively 120° and 5°. Then $n=$
(a) 16
(b) 7
(c) 9
(d) 10
13. Between the numbers 1 and $31, m$ means are inserted so that the ratio of $7^{\text {th }}$ and the $(m-1)^{\text {th }}$ mean is $5: 9$, then the value of m is
(a) 14
(b) 10
(c) 7
(d) 3
14. If the arithmetic mean of two positive numbers a and $b(a>b)$ is twice their G.M., then $a: b=$
(a) $6+\sqrt{7}: 6-\sqrt{7}$
(b) $2+\sqrt{3}: 2-\sqrt{3}$
(c) $5+\sqrt{6}: 5-\sqrt{6}$
(d) none of these
15. Let $P=\frac{3}{17}+\frac{33}{17^{2}}+\frac{333}{17^{3}}+\ldots \infty$ then P equals
(a) $\frac{3}{17}$
(b) $\frac{7}{17}$
(c) $\frac{3}{7}$
(d) $\frac{51}{112}$
16. Between the numbers 2 and 20, 8 A.M's are inserted, then their sum is
(a) 88
(b) 44
(c) 176
(d) none of these
17. If the roots of the equation $a x^{3}+3 x^{2}+c x+d=0$ are in G.P., then
(a) $a^{3} c=b d^{3}$
(b) $a b^{3}=c d^{3}$
(c) $a^{3} b=c^{3} d$
(d) $c^{3} a=b^{3} d$
18. The age of the father of two children is twice of the elder one added to four times that of the younger one. If the geometric mean of the ages of the two children is $4 \sqrt{3}$ and their harmonic mean is 6 , father's age (in years) is
(a) 36
(b) 40
(c) 50
(d) 56 .
19. Let $a_{1}, a_{2}, a_{3}, \ldots$. be a sequence such that $a_{1}=2$ and $a_{n}-a_{n-1}=2 n \forall n \geq 2$, then $a_{1}+a_{2}+\ldots+a_{20}=$
(a) 3040
(b) 3020
(c) 2020
(d) 3080
20. If three successive terms of a G.P. with common ratio $r(r>1)$ form the sides of a $\triangle A B C$ and $[r]$ denotes greatest integer function, then $[r]+[-r]=$
(a) 0
(b) 1
(c) -1
(d) none of these
21. The set of values of m for which a chord of slope m of the circle $x^{2}+y^{2}=16$ touches the parabola $y^{2}=8 x$ is
(a) $(-\infty,-1) \cup(1, \infty)$
(b) $(-\infty, \infty)$
(c) $\left(-\infty,-\sqrt{\frac{\sqrt{2}-1}{2}}\right) \cup\left(\sqrt{\frac{\sqrt{2}-1}{2}}, \infty\right)$
(d) none of these
22. If the tangent drawn at a point $\left(t^{2}, 2 t\right)$ on the parabola $y^{2}=4 x$ is same as normal drawn at $(\sqrt{5} \cos \alpha, 2 \sin \alpha)$ on the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{4}=1$, then which of the following is not true ?
(a) $t= \pm \frac{1}{\sqrt{5}}$
(b) $\alpha=-\tan ^{-1} 2$
(c) $\alpha=\tan ^{-1} 2$
(d) none of these
23. If two points are taken on minor axis of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the same distance from the centre as the foci, the sum of the squares of the perpendiculars from these point on any tangent to the ellipse if $a<b$ is
(a) a^{2}
(b) b^{2}
(c) $2 a^{2}$
(d) $2 b^{2}$
24. The equation of parabola whose latus rectum is 2 units, axis of line is $x+y-2=0$ and tangent at the vertex is $x-y+4=0$
(a) $(x+y-2)^{2}=4 \sqrt{2}(x-y+4)^{2}$
(b) $(x-y-4)^{2}=4 \sqrt{2}(x+y-2)$
(c) $(x+y-2)^{2}=2 \sqrt{2}(x-y+4)$
(d) none of these
25. If $A S B$ is the focal chord of the parabola $y^{2}=8 x$ such that $A S=4$, then the length $S B=$
(a) 6
(b) 3
(c) 4
(d) none of these
26. Let $y=4 x^{2}$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$ intersect iff
(a) $|a| \leq \frac{1}{\sqrt{2}}$
(b) $a<-\frac{1}{\sqrt{2}}$
(c) $a>-\frac{1}{\sqrt{2}}$
(d) none of these
27. The shortest distance between the parabola's $y^{2}=4 x$ and $y^{2}-2 x+6=0$ is
(a) $\sqrt{2}$
(b) $\sqrt{5}$
(c) $\sqrt{3}$
(d) none of these.
28. If chords of contact of tangents from two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the ellipse $\frac{x^{2}}{52}+\frac{y^{2}}{13}=1$ are at right angle then ratio of the product of abscissa and ordinate is
(a) $-16: 1$
(b) $4: 1$
(c) $16: 1$
(d) none of these
29. A tangent having slope $-\frac{4}{3}$ to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$ intersects the major and minor axes at A and B.If O is the origin, then the area of the $\triangle O A B$ (in sq. units) is
(a) 48
(b) 9
(c) 24
(d) 16
30. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the ellipse is
(a) $x^{2}+12 y^{2}=16$
(b) $4 x^{2}+48 y^{2}=48$
(c) $4 x^{2}+64 y^{2}=48$
(d) $x^{2}+16 y^{2}=16$

SOLUTIONS

1. (c) : For $n=1$, L.H.S of $P(1)=1$ and R.H.S. of $P(1)=2-1=1$
$\therefore P(1)$ is not true, as L.H.S of $P(1)=1<1=$ RHS. of $P(1)$, False
Again $n=2$, L.H.S. of $P(2)=1+\frac{1}{4}=\frac{5}{4}$
R.H.S. of $P(2)=2-\frac{1}{2}=\frac{3}{2}=\frac{6}{4}$
\therefore L.H.S. of $P(2)<$ R.H.S. of $P(2)$
$\therefore \quad P(2)$ is true.
Hence, the statement is true for $n>1 \forall n \in N$.
2. (a): As $P(n)=(n+1)+(n+2)+(n+3)$
$P(n)=3 n+6=3(n+2)$
$\therefore \quad P(1)=3(3)=9$ which is divisible by 9
\therefore Least value of n is 1 .
3. (c) : $P(n)=5^{n}-2^{n}$

Let $n=1 \quad \therefore \quad P(1)=3 \lambda=3$
$\therefore \lambda=1$
Similarly, $n=5 \quad \therefore \quad P(5)=5^{5}-2^{5}$
$\Rightarrow P(5)=3125-32=3093=3 \times 1031$
In this case $\lambda=1031$
Similarly, we can check the result for other cases and find that the least value of λ and n is 1 .
4. (c) : The given expression is

$$
\left(1-3 x+3 x^{2}-x^{\frac{1}{3}}\right)^{2 n}=(1-x)^{6 n}
$$

Since the power of the expansion is an even number, therefore there will be only one middle term, which
is $\left(\frac{6 n}{2}+1\right)^{\text {th }}$ term i.e. $(3 n+1)^{\text {th }}$ term.
$\therefore \quad T_{3 n+1}={ }^{6 n} C_{3 n}(-x)^{3 n}=\frac{6 n!}{3 n!3 n!}(-x)^{3 n}$
5. (c) : $\left(1+x+x^{2}\right)^{n}=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots$
$\ldots+b_{2 n} x^{2 n}$
Putting $x=1$, we get
$3^{n}=b_{0}+b_{1}+b_{2}+b_{3}+\ldots+b_{2 n}$
Putting $x=-1$, we get
$1=b_{0}-b_{1}+b_{2}-b_{3}+b_{4}-\ldots .+b_{2 n}$
Adding (i) and (ii), we get

$$
\begin{equation*}
3^{n}+1=2\left(b_{0}+b_{2}+b_{4}+\ldots+b_{2 n}\right) \tag{ii}
\end{equation*}
$$

$\therefore \quad \frac{3^{n}+1}{2}=b_{0}+b_{2}+b_{4}+b_{6}+\ldots+b_{2 n}$
6. (a) : The given expression is

$$
(\sqrt[5]{2}+\sqrt[10]{3})^{60}=\left(2^{1 / 5}+3^{1 / 10}\right)^{60}
$$

Now L.C.M. of 5 and 10 is 10 .
\therefore Number of rational terms

$$
\begin{aligned}
T_{r+1} & ={ }^{60} C_{r}\left(2^{1 / 5}\right)^{60-r}\left(3^{1 / 10}\right)^{r} \\
& ={ }^{60} C_{r} 2^{\left(12-\frac{r}{5}\right)} \cdot 3^{\frac{r}{10}}
\end{aligned}
$$

As $0 \leq r \leq 60$
$\therefore r=0,10,20,30,40,50,60$
\therefore Number of rational terms are 7 .
\therefore Number of irrational terms equals to $61-7=54$.
7. (d) : Here, $T_{r+1}={ }^{10} C_{r}\left(x \sin ^{-1} \alpha\right)^{10-r}\left(\frac{\cos ^{-1} \alpha}{x}\right)^{r}$ $={ }^{10} C_{r} x^{10-2 r}\left(\sin ^{-1} \alpha\right)^{10-r}\left(\cos ^{-1} \alpha\right)^{r}$
For independent term of x, let $10-2 r=0$
$\therefore r=5, T_{6}={ }^{10} C_{5}\left(\sin ^{-1} \alpha \cos ^{-1} \alpha\right)^{5}$
Here $f(\alpha)=\sin ^{-1} \alpha \cos ^{-1} \alpha$, let $\sin ^{-1} \alpha=w$
$\Rightarrow f(w)=w\left(\frac{\pi}{2}-w\right),-\frac{\pi}{2} \leq w \leq \frac{\pi}{2}$
$\Rightarrow f^{\prime}(w)=\frac{\pi}{2}-2 w$.
Now, $f^{\prime}(w)=0$ gives $w=\pi / 4$
$\therefore f\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{16}, f\left(-\frac{\pi}{2}\right)=-\frac{\pi^{2}}{2}, f\left(\frac{\pi}{2}\right)=0$
$\therefore w \in\left(-\frac{\pi^{2}}{2}, \frac{\pi^{2}}{16}\right)$
\therefore Required range $\left[{ }^{10} C_{5}\left(-\frac{\pi^{2}}{2}\right)^{5},{ }^{10} C_{5}\left(\frac{\pi^{2}}{16}\right)^{5}\right]$

$$
=\left[\frac{-{ }^{10} C_{5} \pi^{10}}{2^{5}}, \frac{{ }^{10} C_{5} \pi^{10}}{2^{20}}\right]
$$

8. (d) : Here, $\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\ldots .+n \frac{C_{n}}{C_{n-1}}$
$=\frac{n}{1}+2 \frac{n(n-1)}{2 \cdot n}+\frac{3 n(n-1)(n-2)}{6} \times \frac{2}{n(n-1)}+\ldots .+n \cdot \frac{1}{n}$
$=n+(n-1)+(n-2)+\ldots+1$
$=\frac{n(n+1)}{2}\left[\because\right.$ Sum of first n natural numbers $\left.=\frac{n(n+1)}{2}\right]$
9. (a) : The given expression is $\left(\frac{1}{x}+x^{\log _{10} x}\right)^{5}$

Now, $T_{3}={ }^{5} C_{2}\left(\frac{1}{x}\right)^{3}\left(x^{\log _{10} x}\right)^{2}$
Now, $10\left(\frac{1}{x}\right)^{3} \cdot x^{2 \log _{10} x}=1000$
$\Rightarrow x^{2 \log _{10} x-3}=10^{2} \Rightarrow 2 \log _{10} x-3=\log _{x} 10^{2}$
$\Rightarrow 2 \log _{10} x-3=\frac{2}{\log _{10} x}$
$\Rightarrow 2 a-3=\frac{2}{a}\left[\right.$ where $\left.a=\log _{10} x\right] \Rightarrow 2 a^{2}-3 a-2=0$
$\Rightarrow 2 a(a-2)+1(a-2)=0 \Rightarrow(2 a+1)(a-2)=0$
$\therefore a=2$ and $a \neq-\frac{1}{2} \quad \therefore \quad \log _{10} x=2 \quad \Rightarrow x=100$
10. (d) : Let $\left(t_{r+1}\right)^{\text {th }}$ term is the greatest term. t_{r+1} will be greatest when $\frac{t_{r+1}}{t_{r}} \geq 1$ and $\frac{t_{r+2}}{t_{r+1}} \leq 1$
Here the given expansion is $(2 x-3 y)^{28}$
$\begin{aligned} \therefore & t_{r+1}={ }^{28} C_{r}(2 x)^{28-r} \cdot(-3 y)^{r} \\ & t_{r}={ }^{28} C_{r-1}(2 x)^{29-r}(-3 y)^{r-1} \\ & t_{r+2}={ }^{28} C_{r+1}(2 x)^{27-r}(-3 y)^{r+1}\end{aligned}$
Now, $\frac{t_{r+1}}{t_{r}} \geq 1$ gives $\frac{29-r}{r} \cdot\left|\frac{-3 y}{2 x}\right| \geq 1$
$\Rightarrow \quad \frac{29-r}{r} \cdot\left|\frac{-2}{3}\right| \geq 1 \quad[\because x=9$ and $y=4]$
$\Rightarrow 2(29-r) \geq 3 r \Rightarrow 5 r \leq 58 \Rightarrow r \leq \frac{58}{5}=11 \frac{3}{5}$
and $\frac{t_{r+2}}{t_{r+1}} \leq 1$ gives $\frac{28-r}{r+1}\left|\frac{-3 y}{2 x}\right| \leq 1$
$\Rightarrow \frac{28-r}{r+1} \times\left|\frac{-3 \times 4}{2 \times 9}\right| \leq 1 \Rightarrow \frac{28-r}{r+1} \cdot \frac{2}{3} \leq 1$
$\Rightarrow 56-2 r \leq 3 r+3 \Rightarrow 53 \leq 5 r$
$\Rightarrow r \geq \frac{53}{5}=10 \frac{3}{5}$
$\therefore \quad t_{r+1}$ will be greatest when

$$
10 \frac{3}{5} \leq r \leq 11 \frac{3}{5} \text { i.e. when } 11
$$

$\therefore t_{12}$ is greatest.
11. (b): We are given that sum of n terms of an A.P. is $c n(n-1)$.
Let $S_{n}=c n(n-1) \therefore t_{n}=S_{n}-S_{n-1}$

$$
\begin{aligned}
& =c n(n-1)-c(n-1)(n-2) \\
& =c\left[\left(n^{2}-n\right)-\left(n^{2}-3 n+2\right)\right] \\
& =c(2 n-2) \Rightarrow t_{n}=2 c(n-1)
\end{aligned}
$$

$\Rightarrow t_{n}^{2}=4 c^{2}\left(n^{2}-2 n+1\right)$
Now, $\sum t_{n}^{2}=4 c^{2} \sum\left(n^{2}-2 n+1\right)$

$$
\begin{aligned}
& =4 c^{2} n\left[\frac{2 n^{2}+3 n+1-6 n-6+6}{6}\right] \\
& =\frac{4 c^{2} n}{6}\left(2 n^{2}-3 n+1\right)=\frac{2}{3} c^{2} n(2 n-1)(n-1)
\end{aligned}
$$

12. (c) : Let the polygon have n sides. Then sum of all the interior angles $=(2 n-4) 90^{\circ}$
$\therefore(2 n-4) 90=\frac{n}{2}[2(120)+(n-1) 5]$
$\Rightarrow 5 n^{2}-125 n+720=0$
$\Rightarrow(n-16)(n-9)=0 \Rightarrow n=16,9$
When $n=16$, the largest angle is given by

$$
120+(16-1) 5=195,\left[\because t_{n}=a+(n-1) d\right]
$$

which is impossible and hence $n=9$.
13. (a): Let the progression be

$$
1,{ }^{*},{ }^{*},{ }^{*}, \ldots, *, 31
$$

Here $a=1, t_{m+2}=31$. Let the common difference be d.
$\therefore 1+(\overline{m+2}-1) d=31 \Rightarrow(m+1) d=30 \Rightarrow d=\frac{30}{m+1}$
Given that, $\frac{7^{\text {th }} \text { mean }}{(m-1)^{\text {th }} \text { mean }}=\frac{5}{9}$
$\Rightarrow \frac{1+7 d}{1+(m-1) d}=\frac{5}{9} \Rightarrow \frac{1+\frac{7 \times 30}{m+1}}{1+\frac{30(m-1)}{m+1}}=\frac{5}{9}$
\Rightarrow On solving, we get $m=14$
14. (b) : According to the given problem, we have

$$
\begin{aligned}
& \frac{a+b}{2}=2 \sqrt{a b} \Rightarrow a+b=4 \sqrt{a b} \\
\Rightarrow & a^{2}+2 a b+b^{2}=16 a b \\
\Rightarrow & a^{2}-14 a b+b^{2}=0 \Rightarrow\left(\frac{a}{b}\right)^{2}-14\left(\frac{a}{b}\right)+1=0 \\
\Rightarrow & \frac{a}{b}=\frac{2+\sqrt{3}}{2-\sqrt{3}}, \frac{2-\sqrt{3}}{2+\sqrt{3}}
\end{aligned}
$$

\therefore The required ratio is $2+\sqrt{3}: 2-\sqrt{3}$.
15. (d) : $P=\frac{3}{17}+\frac{33}{17^{2}}+\frac{333}{17^{3}}+\ldots . \infty$

$$
\begin{equation*}
\frac{P}{17}=\frac{3}{17^{2}}+\frac{33}{17^{3}}+\ldots . \infty \tag{i}
\end{equation*}
$$

(i) - (ii) gives,

$$
P\left(1-\frac{1}{17}\right)=\frac{3}{17}+\frac{30}{17^{2}}+\frac{300}{17^{3}}+\ldots .+\infty
$$

$$
\Rightarrow \frac{16}{17} P=\frac{3}{17}\left(1+\frac{10}{17}+\frac{100}{17^{2}}+\ldots .+\infty\right)
$$

$$
\Rightarrow \frac{16}{17} P=\frac{3}{7} \quad \Rightarrow \quad P=\frac{51}{112}
$$

16. (a): Let the progression be

$$
2,{ }^{*}, *, *, \ldots . . .{ }^{*}, 20
$$

Let the common difference be d.
$\therefore \quad t_{10}=20 \Rightarrow 2+9 d=20 \Rightarrow d=2$
First mean $=a+d=2+2=4$
Second mean $=a+2 d=2+4=6$
Third mean $=a+3 d=2+6=8$
$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$

Eight mean $=a+8 d=2+16=18$
\therefore Sum of all the 8 means $=\frac{8}{2}[4+18]=4[22]=88$
17. (d): Let the roots be $\frac{x}{y}, x, x y$.

Product of the roots $=x^{3}=-\frac{d}{a} \Rightarrow x=\left(\frac{-d}{a}\right)^{1 / 3}$
Now putting $x=\left(-\frac{d}{a}\right)^{1 / 3}$ in the given equation as x is its root, we get
$a\left(-\frac{d}{a}\right)+b\left(-\frac{d}{a}\right)^{\frac{2}{3}}+c\left(-\frac{d}{a}\right)^{\frac{1}{3}}+d=0$
$\Rightarrow b\left(\frac{d}{a}\right)^{\frac{2}{3}}=c\left(\frac{d}{a}\right)^{\frac{1}{3}} \Rightarrow b^{3}\left(\frac{d}{a}\right)^{2}=c^{3}\left(\frac{d}{a}\right)$
$\Rightarrow b^{3}\left(\frac{d}{a}\right)=c^{3}\left[\right.$ dividing both sides by $\left.\left(\frac{d}{a}\right)\right]$
$\Rightarrow b^{3} d=a c^{3}$
18. (b) : Let the father's age be F and that of his elder and younger child respectively be E and Y.
$\therefore F=2 E+4 Y$
$\sqrt{E Y}=4 \sqrt{3}$
...(ii) and $\frac{2 E Y}{E+Y}=6$
Solving (ii) and (iii) we get $E=12$ and $Y=4$
\therefore (i) becomes
$F=2 \times 12+4 \times 4=24+16=40$
Thus, the father's age is 40 years.
19. (d): $a_{1}=2, a_{n}-a_{n-1}=2 n \forall n \geq 2$
$a_{2}=a_{1}+2 \cdot 2 \Rightarrow a_{2}=6$
$a_{3}=a_{2}+3 \cdot 2 \Rightarrow a_{3}=12, a_{4}=20$
$S=2+6+12+20+\ldots . .+a_{n}$
$S=2+6+12+\ldots .+a_{n-1}+a_{n}$
(i) - (ii) gives
$2+4+6+8+\ldots .+n$ terms $-a_{n}=0$
$\Rightarrow a_{n}=2(1+2+3+\ldots . .+$ to n terms $)$
$a_{n}=2 \frac{n(n+1)}{2}=n(n+1) \quad \therefore \quad \Sigma a_{n}=\Sigma n^{2}+\Sigma n$
$\Rightarrow \quad S_{n}=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2} \quad \therefore \quad \mathrm{~S}_{20}=3080$
20. (c) : Let the sides of triangle be $a, a r, a r^{2}$.
$\therefore r>1 \therefore a r^{2}$ is greatest side $\therefore a+a r>a r^{2}$
$\Rightarrow r^{2}-r-1=0$
$\Rightarrow \frac{1-\sqrt{5}}{2}<r<\frac{1+\sqrt{5}}{2} \Rightarrow 1<r<\frac{1+\sqrt{5}}{2}(\because r>1)$
$\therefore \quad[r]=1$. Also $-\frac{1+\sqrt{5}}{2}<-r<-1 \quad(\therefore[-r]=2)$
$\therefore[r]+[-r]=1-2=-1$
21. (c) : For parabola $y^{2}=4 a x$, the line $y=m x+c$
will be tangent if $c=\frac{a}{m}$.
Equation of tangent to parabola $y^{2}=8 x$
is $y=m x+\frac{2}{m}$.
Now line to be chord of the circle $x^{2}+y^{2}=16$ if distance from $(0,0)$ to the line will be less than the radius of circle.
$\therefore \frac{\frac{2}{m}}{\sqrt{1+m^{2}}}<4$
$\Rightarrow \frac{2}{m \sqrt{1+m^{2}}}<4$
$\Rightarrow 1<4 m^{2}\left(1+m^{2}\right)$
$\Rightarrow 4 m^{4}+4 m^{2}-1>0$

$\Rightarrow m^{4}+m^{2}-\frac{1}{4}>0 \Rightarrow\left(m^{2}+\frac{1}{2}\right)^{2}-\frac{1}{2}>0$
$\Rightarrow\left(m^{2}+\frac{1}{2}+\frac{1}{\sqrt{2}}\right)\left(m^{2}+\frac{1}{2}-\frac{1}{\sqrt{2}}\right)=0$
$\Rightarrow \quad m^{2}>-\frac{1}{2}+\frac{1}{\sqrt{2}}$ or $m^{2}>\frac{\sqrt{2}-1}{2}$
$\Rightarrow|m|>\sqrt{\frac{\sqrt{2}-1}{2}}$
$\Rightarrow m \in\left(-\infty,-\sqrt{\frac{\sqrt{2-1}}{2}}\right) \cup\left(\sqrt{\frac{\sqrt{2-1}}{2}}, \infty\right)$
22. (d): Equation of tangent at $\left(t^{2}, 2 t\right)$ is
$x=t y-t^{2}$
Equation of normal to ellipse at $(\sqrt{5} \cos \alpha, 2 \sin \alpha)$
is $\sqrt{5} x \sec \alpha-2 y \operatorname{cosec} \alpha=1$
Given (i) $=$ (ii)
$\Rightarrow \sqrt{5} \sec \alpha=\frac{2 \operatorname{cosec} \alpha}{t}=-\frac{1}{t^{2}}$
$\Rightarrow \cos \alpha=-\sqrt{5} t^{2}$ and $\sin \alpha=-2 t$
$\Rightarrow \cos ^{2} \alpha+\sin ^{2} \alpha=5 t^{4}+4 t^{2}=1$
$\Rightarrow t^{2}=\frac{1}{5}$. Now, $\frac{\sin \alpha}{\cos \alpha}=\frac{2 t}{-\sqrt{5} t^{2}}=\frac{2}{\sqrt{5}} \times \frac{1}{t}=\frac{2}{\sqrt{5}} \times(\pm 5)$
$\therefore \tan \alpha= \pm 2 \Rightarrow \tan \alpha=-2, \tan \alpha=2$
23. (c) : Given $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\therefore O S=a e=a \sqrt{1-\frac{b^{2}}{a^{2}}}$
$=\sqrt{a^{2}-b^{2}}$
So two points on the minor
 axis are
$S_{1}\left(0, \sqrt{a^{2}-b^{2}}\right), S_{1}^{\prime}\left(0,-\sqrt{a^{2}-b^{2}}\right)$
Let tangent to the ellipse be $y=m x+c=m x+\sqrt{a^{2} m^{2}+b^{2}}$ where m is parameter.
Now sum of the squares of perpendiculars on the tangent from the points S_{1} and S_{1}^{\prime} is

$$
\begin{aligned}
& \left(\frac{\sqrt{a^{2}-b^{2}}-\sqrt{a^{2} m^{2}+b^{2}}}{\sqrt{1+m^{2}}}\right)^{2}+\left(-\frac{\sqrt{a^{2}-b^{2}}-\sqrt{a^{2} m^{2}+b^{2}}}{\sqrt{1+m^{2}}}\right)^{2} \\
& =2\left(\frac{a^{2}-b^{2}+a^{2} m^{2}+b^{2}}{1+m^{2}}\right)=\frac{2 a^{2}\left(1+m^{2}\right)}{1+m^{2}}=2 a^{2}
\end{aligned}
$$

24. (c) : Let $P(x, y)$ be any point on the parabola and say $P M$ and $P T$ are perpendicular from P on the axis and tangent at the vertex.
$\therefore(P M)^{2}=$ latus rectum
(PT)

$\therefore\left(\frac{x+y-2}{\sqrt{1^{2}+1^{2}}}\right)^{2}=2\left(\frac{x-y+4}{\sqrt{1^{2}+1^{2}}}\right)$
$\Rightarrow \quad(x+y-2)^{2}=2 \sqrt{2}(x-y+4)$
25. (c) : We know that semi latus rectum of a parabola is the H.M. between the segment of any focal chord of a parabola.
$\therefore A S, 4, S B$ are in H.P.

$\Rightarrow 4=2 \times \frac{A S \cdot S B}{A S+S B}$
$\Rightarrow 4=\frac{2 \times 4 S B}{4+S B} \Rightarrow S B=4$

FULLY LOADED \& COMPLETELY UPDATED

MTG's BITSAT Explorer is not only the most exhaustive prep-tool, but also the only book available at present, updated as per the latest BITSAT syllabus for students aspiring for top rank in BITSAT 2018.

Get MTG's BITSAT Explorer today for a real-world feel of BITSAT. Find out what's different about the BITSAT test, including its pattern of examination and key success factors. Be it with chapter-wise MCQs or model test papers, check how good your chances are for glory in BITSAT 2018.

FEATURES:

- Covers all 5 subjects - Physics, Chemistry, Mathematics, English \& Logical Reasoning
- Chapterwise $1,000+$ MCQs in each section for practice
- 5 Model Test Papers with detailed solutions
- Free interactive CD

Visit www.MTG.in to buy online. Or visit a leading bookseller near you. For more information, email info@mtg.in or call 180030023355 (toll-free).
26. (a) : $y=4 x^{2} \Rightarrow x^{2}=\frac{1}{4} y$
$\therefore \frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$ becomes $\frac{y}{4 a^{2}}-\frac{y^{2}}{16}=1$
$\Rightarrow 4 y-a^{2} y^{2}=16 a^{2} \Rightarrow a^{2} y^{2}-4 y+16 a^{2}=0$
$\Rightarrow D \geq 0$ for intersection of two curves
$\Rightarrow 16-4 a^{2}\left(16 a^{2}\right) \geq 0 \Rightarrow 1-4 a^{4} \geq 0$
$\Rightarrow\left(\sqrt{2} a^{2}\right)^{2} \leq 1 \Rightarrow|\sqrt{2} a| \leq 1 \Rightarrow-\frac{1}{\sqrt{2}} \leq a \leq \frac{1}{\sqrt{2}}$
27. (b) : Equation of normal to the curve $y^{2}=4 x$ at $\left(m^{2}, 2 m\right)$ is taken as
$y-y_{1}=-\frac{1}{\left(\frac{d y}{d x}\right)_{\left(m^{2}, 2 m\right)}}\left(x-x_{1}\right)$
$\Rightarrow(y-2 m)=-m\left(x-m^{2}\right)$
$\Rightarrow y+m x-2 m-m^{3}=0$
Similarly normal to $y^{2}-2 x+6=0$ at $\left(\frac{1}{2} t^{2}+3, t\right)$ is
$y+t(x-3)-t-\frac{1}{2} t^{3}=0$
Shortest distance between two curves exist along the common normal.
Let (i) and (ii) are same
$\therefore-2 m-m^{3}=-4 m-\frac{1}{2} m^{3} \Rightarrow m=0, m= \pm 2$
Points on the parabolas $\left(m^{2}, 2 m\right)=(4,4)$
and $\left(\frac{1}{2} m^{2}+3, m\right)=(5,2)$
\therefore Shortest distance $=\sqrt{(5-4)^{2}+(4-2)^{2}}=\sqrt{5}$
28. (a) : Equation of chord of contact of tangent from $\left(x_{1}, y_{1}\right)$ to the ellipse is
$\frac{x x_{1}}{52}+\frac{y y_{1}}{13}=0 \Rightarrow m_{1}=$ slope $=\frac{-x_{1}}{4 y_{1}}$
Again chord of contact of tangent from $\left(x_{2}, y_{2}\right)$ is
$\frac{x x_{2}}{52}+\frac{y y_{2}}{13}=0 \quad \therefore \quad m_{2}=-\frac{x_{2}}{4 y_{2}}$
Given tangents are right angle $\therefore m_{1} m_{2}=-1$
$\Rightarrow \frac{x_{1}}{4 y_{1}} \cdot \frac{x_{2}}{4 y_{2}}=-1 \Rightarrow \frac{x_{1} x_{2}}{y_{1} y_{2}}=-\frac{16}{1}$
29. (c) : Any point on the ellipse
$\frac{x^{2}}{(3 \sqrt{2})^{2}}+\frac{y^{2}}{(4 \sqrt{2})^{2}}=1$ can be taken as
($3 \sqrt{2} \cos \theta, 4 \sqrt{2} \sin \theta$) and slope of the tangent
$-\frac{b^{2} x}{a^{2} y}=-\frac{32(3 \sqrt{2} \cos \theta)}{18(4 \sqrt{2} \sin \theta)}=-\frac{4}{3} \cot \theta$
Given slope of the tangent $=-\frac{4}{3}$
From (i) and (ii), we get $\cot \theta=1 \Rightarrow \theta=\frac{\pi}{4}$
Hence equation of tangent is
$\frac{x \cdot \frac{1}{\sqrt{2}}}{3 \sqrt{2}}+\frac{y \cdot \frac{1}{\sqrt{2}}}{4 \sqrt{2}}=1 \Rightarrow \frac{x}{6}+\frac{y}{8}=1$
Hence $A(6,0), B(0,8)$
Area of $\triangle O A B=\frac{1}{2} \times 6 \times 8=24$ sq. units
30. (a): The given ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$
i.e., the point A, the corner of the rectangle in $1^{\text {st }}$ quadrant is $(2,1)$. Again the ellipse circumscribing the rectangle passes through the point $(4,0)$, so its equation is $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$. $A(2,1)$ lies on the above ellipse
$\Rightarrow \frac{4}{16}+\frac{1}{b^{2}}=1 \Rightarrow b^{2}=\frac{4}{3}$

Thus the equation to the required ellipse is
$\frac{x^{2}}{16}+\frac{3}{4} y^{2}=1 \Rightarrow x^{2}+12 y^{2}=16$

Solution Sender of Maths Musing

SET-176

1. Satya Dev
2. Dohita Banerjee
3. Riku Pramanik
4. Santak Panda
5. V. Damodhar Reddy
6. Sannibha Pande
7. N. Jayanthi
8. Khokon Kumar Nandi
9. Abhinav Kumar
(Bangalore)
(West Bengal)
(West Bengal)
(Odisha)
(Telangana)
(West Bengal)
(Hyderabad)
(West Bengal)
(Punjab)

SET-177

1. Prashant Pandey
(Nagpur)

M戠TH archives

Math Archives, as the title itself suggests, is a collection of various challenging problems related to the topics of JEE Main \& Advanced Syllabus. This section is basically aimed at providing an extra insight and knowledge to the candidates preparing for JEE Main \& Advanced. In every issue of MT, challenging problems are offered with detailed solution. The readers' \& comments and suggestions regarding the problems and solutions offered are always welcome.

1. Let T_{r} be the $r^{\text {th }}$ term of an A.P. whose first term is a and common difference is d. If for some positive integers $m, n, m \neq n, T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, then $a-d$ equals
(a) 0
(b) 1
(c) $\frac{1}{m n}$
(d) $\frac{1}{m}+\frac{1}{n}$
2. If $\vec{a}=2 \vec{i}-2 \vec{j}+\vec{k}$ then
$[\vec{i} \vec{a} \vec{a} \times \vec{i}]+[\vec{j} \vec{a} \vec{a} \times \vec{j}]+[\vec{k} \vec{a} \vec{a} \times \vec{k}]=$
(a) -9
(b) 9
(c) 18
(d) -18
3. Let $S_{1}=\sum_{j=1}^{10} j(j-1)\left({ }^{10} C_{j}\right), S_{2}=\sum_{j=1}^{10} j\left({ }^{10} C_{j}\right)$
and $S_{3}=\sum_{j=1}^{10} j^{2}\left({ }^{10} C_{j}\right)$
Statement -I: $S_{3}=55 \times 2^{9}$
Statement -II: $S_{1}=90 \times 2^{8}$ and $S_{2}=10 \times 2^{8}$
(a) Both Statement -I and Statement -II are true and Statement -II is correct explanation of Statement -I.
(b) Both Statement -I and Statement -II are true and Statement -II is not correct explanation of Statement -I.
(c) Statement -I is true but Statement -II is false.
(d) Statement -I is false but Statement -II is true.
4. Let $f:[0, \sqrt{3}] \rightarrow\left[0, \frac{\pi}{3}+\log _{e} 2\right]$ defined by $f(x)=\log _{e} \sqrt{x^{2}+1}+\tan ^{-1} x$, then $f(x)$ is
(a) one - one and onto
(b) one - one but not onto
(c) onto but not one - one
(d) neither one - one nor onto
5. In $\triangle P Q R, \angle R=\frac{\pi}{2}$, If $\tan \frac{P}{2}$ and $\tan \frac{Q}{2}$ are roots of the equation $a x^{2}+b x+c=0,(a \neq 0)$ then
(a) $a+b=c$
(b) $b+c=a$
(c) $a+c=b$
(d) $b=c$
6. $\theta \in[0,2 \pi]$ and z_{1}, z_{2}, z_{3} are three complex numbers such that they are collinear and $(1+|\sin \theta|) z_{1}+(|\cos \theta|-1) z_{2}-\sqrt{2} z_{3}=0$. If at least one of the complex numbers z_{1}, z_{2}, z_{3} is non- zero then number of possible values of θ is
(a) ∞
(b) 4
(c) 2
(d) 8
7. $\int_{1}^{5}(x-1)(x-2)(x-3)(x-4)(x-5) d x=$
(a) 0
(b) 5
(c) 1
(d) 4
8. The differential equation whose solution is $A x^{2}+B y^{2}=1$ where A and B are arbitrary constants, is of
(a) first order and second degree
(b) first order and first degree
(c) second order and first degree
(d) second order and second degree
9. The number of critical points of the curve $f(x)=(x-2)^{2 / 3}(2 x+1)$ are
(a) 1
(b) 2
(c) 3
(d) 0
10. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ where $x, y>0$ then the triangle is
(a) right angled
(b) obtuse angled
(c) equilateral
(d) isosceles

SOLUTIONS

1. (a): $T_{m}=1 / n=a+(m-1) d$
$T_{n}=1 / m=a+(n-1) d$
From (i) and (ii) we get, $a=\frac{1}{m n}, d=\frac{1}{m n} \Rightarrow a-d=0$
2. (d): $-\left\{(\vec{a} \times \vec{i})^{2}+(\vec{a} \times \vec{j})^{2}+(\vec{a} \times \vec{k})^{2}\right\}=-2|\vec{a}|^{2}$
3. (c) : $S_{1}=\sum_{j=1}^{10} j(j-1) \frac{10!}{j(j-1)(j-2)!(10-j)!}$
$=90 \sum_{j=2}^{10} \frac{8!}{(j-2)!(8-(j-2))!}=90 \cdot 2^{8}$
$S_{2}=\sum_{j=1}^{10} j \frac{10!}{j(j-1)!(9-(j-1))!}$
$=10 \sum_{j=1}^{10} \frac{9!}{(j-1)!(9-(j-1))!}=10 \cdot 2^{9}$
$S_{3}=\sum_{j=1}^{10}[j(j-1)+j] \frac{10!}{j!(10-j)!}$
$=\sum_{j=1}^{10} j(j-1)^{10} C_{j}+\sum_{j=1}^{10} j^{10} C_{j}=90 \cdot 2^{8}+10 \cdot 2^{9}$
$=90 \cdot 2^{8}+20 \cdot 2^{8}=110 \cdot 2^{8}=55 \cdot 2^{9}$
4. (a) : $f^{\prime}(x)=\frac{x+1}{x^{2}+1} \Rightarrow f(x)$ is increasing in $[0, \sqrt{3}]$
5. (a) : $\frac{P}{2}+\frac{Q}{2}=\frac{\pi}{4} \Rightarrow c=a+b$
6. (b) : If z_{1}, z_{2}, z_{3} are collinear and $a z_{1}+b z_{2}+c z_{3}=0$ then $a+b+c=0$.Hence $1+|\sin \theta|+|\cos \theta|-1-\sqrt{2}=0$
$\Rightarrow|\sin \theta|+|\cos \theta|=\sqrt{2} \Rightarrow \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
7. (a) : Put $x-3=t$
8. (c) : Differentiate the given equations for 2 times and eliminate A, B
9. (b): $f^{\prime}(x)=0$ or undefined at $x=1,2$
10. (b) : Let
$\cos C=\frac{(3 x+4 y)^{2}+(4 x+3 y)^{2}-(5 x+5 y)^{2}}{2(3 x+4 y)(4 x+3 y)}<0$

Computer science losing out, mechanical hot pick in BTech

Versatile Job Opening Key To New Trend

Engineering is being revisited. Even as seats in this professional course are reducing across the country (from 16.3 lakh in 2013-14 to about 14.7 lakh this year), mechanical engineering seems to be emerging as the hottest pick in times of uncertainty in the IT and software industry.
While engineering continues to be a big draw, its 70-odd options undergo a life cycle of their own. Experts say industry growth, which translates into more jobs and higher incomes, is what decides the path that colleges and students take. And many feel the sun is setting on the computer science engineering stream. While 25.44% of all students opted for it in 2013-14, that has dropped to around 24% this year.
At the same time, mechanical engineering is racing ahead after pipping electronics and communications, which used to be the second most popular choice for four years. While 20.22% of students chose mechanical engineering in the past four years, that proportion has increased to 21.6\% now.

Core courses like civil and electrical engineering are also expected to be top on the charts.

COURSE CORRECTION

STREAM		INTAKE				
		$\mathbf{2 0 1 4 / 1 5}$	$\mathbf{2 0 1 5 / 1 6}$	$\mathbf{2 0 1 6 / 1 7}$	$\mathbf{2 0 1 7 / 1 8}$	
Computer Science	$4,14,762$	$4,08,559$	$3,88,077$	$3,68,267$	$\mathbf{3 , 5 3 , 8 2 5}$	
Mechanical	$3,30,331$	$3,58,052$	$3,47,480$	$3,35,603$	$\mathbf{3 , 1 7 , 4 4 4}$	
Electronics and Comm	$3,43,180$	$3,41,916$	$3,22,292$	$3,02,800$	$\mathbf{2 , 8 0 , 6 5 3}$	
Civil	$2,22,510$	$2,55,139$	$2,46,903$	$2,40,168$	$\mathbf{2 , 2 8 , 8 4 1}$	
Electrical	$2,10,803$	$2,18,071$	$2,09,653$	$2,00,570$	$\mathbf{1 , 9 0 , 7 8 0}$	

Although data from the All India Council for Technical Education (AICTE) shows that seats in undergraduate engineering are reducing, experts feel the course will continue to have lakhs of takers. "Engineering has become a broad-based course like $B A, B C o m$ and BSC. From here, students go on to do several courses, says IIT-Madras director Bhaskar Ramamurthy.
"Mechanical engineering is a great branch. One can fit into a lot of industries after ME," adds Ramamurthy. "But given some amount of uncertainty in the IT sector, there are more takers for mechanical-because mechanical students can join IT companies, but the reverse is not possible." From information technology to leather technology, each of these courses tests the ability of individuals to engineer a lasting impression, may be an innovation, a new process, a fresh thought. But generalized courses are likely to be the flavour for
the coming few years as several industries see a departure from the old.
G D Yadav, vice-chancellor of the Institute of Chemical Technology, says mechanical is rising in popularity because manufacturing industry needs these engineers. "There is so much new construction, new infrastructure, machinery and mechanical engineers are needed everywhere." Hence, computer science and mechanical engineers will be an equal force in the coming year," he adds.
If the current trend in the USA in anything to go by, the demand for chemical engineers too is likely to rise. Enrolment in this programme has doubled in American universities this year thanks to shale gas companies that have upped their recruitment numbers, says Yadav. Renewable energy and electric cars, many forecast, will also see the energy engineering space powering up.

JEE (ADVANCED)

Dry runs are here!

₹ 475

Now, create your own pre-JEE. Just like pre-boards. With previous years' papers and model test papers for JEE (Advanced), complete with detailed solutions, identify your areas of weakness and work on addressing them in time. Multiple test papers ensure you do your dry runs again and again, till such time you feel confident of taking on the best. For it will indeed be the best you compete with in JEE (Advanced). So what are you waiting for? Order MTG's JEE Advanced Explorer today.

Available at all leading book shops throughout India. To buy online visit www.mtg.in.

Scan now with your smartphone or tablet
Application to read QR codes required

For more information or for help in placing your order, call 0124-6601200 or email:info@mtg.in

MATHSMUSING

SOLUTION SET-177

1. $(\mathrm{c}): x^{2}-(y+42)^{2}=2012-(42)^{2}=248=124 \times 2$
$\therefore x+y+42=124, x-y-42=2$
$\Rightarrow x=63, y=19, x-3 y=6$
2. (c) : Given $g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)}, 0<x<2$, $m \neq 0, n$ are integers and $|x-1|=\left\{\begin{array}{l}x-1 ; x \geq 1 \\ 1-x ; x<1\end{array}\right.$
The left hand derivative of $|x-1|$ at $x=1$ is $p=-1$
Also, $\lim _{x \rightarrow 1^{+}} g(x)=p=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{(1+h-1)^{n}}{\log \cos ^{m}(1+h-1)}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{h^{n}}{\log \cos ^{m} h}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{n \cdot h^{n-1}}{m \frac{1}{\cos h}(-\sin h)}=-1$ [Using L'Hospital's rule]
$\Rightarrow\left(\frac{n}{m}\right) \lim _{h \rightarrow 0} \frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)}=1 \Rightarrow n=2$ and $\frac{n}{m}=1$
$\Rightarrow m=n=2$
3. (d): We have,

$$
\frac{d x}{d t}=a\left[-\sin t \sqrt{\cos 2 t}-\frac{\cos t \sin 2 t}{\sqrt{\cos 2 t}}\right]=\frac{-a \sin 3 t}{\sqrt{\cos 2 t}}
$$

and $\frac{d y}{d t}=a\left[\cos t \sqrt{\cos 2 t}-\frac{\sin t \sin 2 t}{\sqrt{\cos 2 t}}\right]=\frac{a \cos 3 t}{\sqrt{\cos 2 t}}$
$\therefore \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=-\cot 3 t \Rightarrow \frac{d^{2} y}{d x^{2}}=3 \operatorname{cosec}^{2} 3 t \cdot \frac{d t}{d x}$
$=\frac{-3 \operatorname{cosec}^{2} 3 t \cdot \sqrt{\cos 2 t}}{a \sin 3 t}=-\left(\frac{3}{a}\right) \operatorname{cosec}^{3} 3 t \sqrt{\cos 2 t}$
$\therefore \quad \frac{\left[1+(d y / d x)^{2}\right]^{3 / 2}}{d^{2} y / d x^{2}}=\frac{\left(1+\cot ^{2} 3 t\right)^{3 / 2}}{\left(-\frac{3}{a}\right) \operatorname{cosec}^{3} 3 t \sqrt{\cos 2 t}}$
$\Rightarrow\left|\frac{\left[1+(d y / d x)^{2}\right]^{3 / 2}}{d^{2} y / d x^{2}}\right|_{t=\pi / 6}=\frac{\sqrt{2} a}{3}$
4. (d) : We have, $\int \frac{\sin ^{3} x / 2}{\cos \frac{x}{2} \sqrt{\cos ^{3} x+\cos ^{2} x+\cos x}} d x$
$=\frac{1}{2} \int \frac{2 \sin (x / 2) \cos (x / 2)\left(2 \sin ^{2} x / 2\right)}{2 \cos ^{2} \frac{x}{2} \sqrt{\cos ^{3} x+\cos ^{2} x+\cos x}} d x$
$=\frac{1}{2} \int \frac{\sin x(1-\cos x)}{(1+\cos x) \sqrt{\cos ^{3} x+\cos ^{2} x+\cos x}} d x$
$=-\frac{1}{2} \int \frac{1-t}{(1+t) \sqrt{t^{3}+t^{2}+t}} d t$, where $t=\cos x$ and $-\sin x d x=d t$
$=\frac{1}{2} \int \frac{t^{2}-1}{(t+1)^{2} \sqrt{t^{3}+t^{2}+t}} d t$
$=\frac{1}{2} \int \frac{t^{2}-1}{\left(t^{2}+2 t+1\right) \sqrt{t^{3}+t^{2}+t}} d t$
$=\frac{1}{2} \int \frac{1-\frac{1}{t^{2}}}{\left(t+2+\frac{1}{t}\right) \sqrt{t+\frac{1}{t}+1}} d t .=\int \frac{1}{u^{2}+1} d u$
$=\tan ^{-1} u+c \quad$ where $t+\frac{1}{t}+1=u^{2} \Rightarrow\left(1-\frac{1}{t^{2}}\right) d t=2 u d u$
$=\tan ^{-1} \sqrt{t+\frac{1}{t}+1}+c=\tan ^{-1} \sqrt{\cos x+\sec x+1}+c$
5. (d) : The equation representing the coaxial system of circles is $x^{2}+y^{2}+2 g x+c+\lambda\left(x^{2}+y^{2}+2 f y+k\right)=0$
$\Rightarrow x^{2}+y^{2}+\frac{2 g}{1+\lambda} x+\frac{2 f \lambda}{1+\lambda} y+\frac{c+k \lambda}{1+\lambda}=0$
The coordinates of the centre of this circle are

$$
\begin{equation*}
\left(-\frac{g}{1+\lambda},-\frac{f \lambda}{1+\lambda}\right) \tag{ii}
\end{equation*}
$$

and radius $=\sqrt{\frac{g^{2}+f^{2} \lambda^{2}-(c+k \lambda)(1+\lambda)}{(1+\lambda)^{2}}}$
For the limiting points, we must have radius $=0$
$\Rightarrow g^{2}+f^{2} \lambda^{2}-(c+k \lambda)(1+\lambda)=0$
$\Rightarrow \dot{\lambda}^{2}\left(f^{2}-k\right)-\lambda(c+k)+\left(g^{2}-c\right)=0$

MPP-6 CLASS XII

ANSWER KEY

1. (d)
2. (b)
3. (b)
4. (c)
5. (b)
6. (a)
7. (b, c, d)
8. (a)
9. (a, b, c)
10. (a)
11. (a, b, c, d)
12. (a, d)
13. (a, c, d)
14. (c)
15. (c)
16. (c)
17. (1)
18. (2)
19. (4)
20. (0)

Let λ_{1} and λ_{2} be the roots of this equation. Then,
$\lambda_{1}+\lambda_{2}=\frac{c+k}{f^{2}-k}$ and $\lambda_{1} \lambda_{2}=\frac{g^{2}-c}{f^{2}-k}$
Thus, the coordinates of limiting points L_{1} and L_{2} are
$L_{1}\left(-\frac{g}{1+\lambda_{1}}, \frac{-f \lambda_{1}}{1+\lambda_{1}}\right)$ and $L_{2}\left(\frac{-g}{1+\lambda_{2}}, \frac{-f \lambda_{2}}{1+\lambda_{2}}\right)$
[From eq. (iv)]
Now, $L_{1} L_{2}$ will subtend a right angle at the origin, if
Slope of $O L_{1} \times$ Slope of $O L_{2}=-1$
$\Rightarrow \frac{f \lambda_{1}}{g} \times \frac{f \lambda_{2}}{g}=-1 \Rightarrow f^{2} \lambda_{1} \lambda_{2}=-g^{2}$
$\Rightarrow f^{2}\left(\frac{g^{2}-c}{f^{2}-k}\right)=-g^{2} \Rightarrow f^{2}\left(g^{2}-c\right)+g^{2}\left(f^{2}-k\right)=0$
$\Rightarrow \frac{c}{g^{2}}+\frac{k}{f^{2}}=2$
6. (a) : Possibilities are $(3,1,1),(2,2,1)$

Number of ways $=\frac{{ }^{5} C_{2} \cdot{ }^{3} C_{2} \cdot{ }^{1} C_{1}}{2!}+\frac{{ }^{5} C_{3} \cdot{ }^{2} C_{1} \cdot{ }^{1} C_{1}}{2!}$
$=(10+15)=25$
7. (c) : We have, $f(x)=g_{9}(x)=\frac{9^{x}}{9^{x}+3}$

Now, $\sum_{r=1}^{1995} f\left(\frac{r}{1996}\right)=f\left(\frac{1}{1996}\right)+f\left(\frac{2}{1996}\right)+f\left(\frac{3}{1996}\right)$
$+\ldots+f\left(\frac{1993}{1996}\right)+f\left(\frac{1994}{1996}\right)+f\left(\frac{1995}{1996}\right)$
$=\left\{f\left(\frac{1}{1996}\right)+f\left(\frac{1995}{1996}\right)\right\}+\left\{f\left(\frac{2}{1996}\right)+f\left(\frac{1994}{1996}\right)\right\}$
$+\left\{f\left(\frac{3}{1996}\right)+f\left(\frac{1993}{1996}\right)\right\}+\ldots+\left\{f\left(\frac{997}{1996}\right)+f\left(\frac{999}{1996}\right)\right\}$
$+f\left(\frac{998}{1996}\right)$
$=\underbrace{1+1+1 \ldots+1+1+}_{997 \text { times }} f\left(\frac{1}{2}\right)=997+\frac{1}{2}[$ from (i) $]=997.5$
$\therefore\left[\sum_{r=1}^{1995} f\left(\frac{r}{1996}\right)\right]=997$
8. (c) : $\sum_{r=0}^{2 n} f\left(\frac{r}{2 n+1}\right)=f(0)+\sum_{r=1}^{2 n} f\left(\frac{r}{2 n+1}\right)$
$=\frac{1}{1+\sqrt{a}}+n=\frac{1}{1+\sqrt{a}}+987$
9. (8) : $2^{2003}=2^{3} \cdot\left(2^{4}\right)^{500}=8(17-1)^{500}=8(17 \lambda+1), \lambda \in I$
\therefore Remainder $=8$
10. (d) : P. $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x}=\exp \lim _{x \rightarrow 0} \frac{\tan x-x}{x^{2}}=e^{0}=1$
Q. $f(x)$ is not differentiable at $x=0, \pm 1$

R. Setting $t=\frac{1}{u}$ in the second integral,

$$
\left.\int_{1 / e}^{\tan x} \frac{t d t}{1+t^{2}}+\int_{\tan x}^{e} \frac{u d u}{1+u^{2}}=\int_{1 / e}^{e} \frac{t d t}{1+t^{2}}=\ln \sqrt{1+t^{2}}\right]_{1 / e}^{e}=\ln e=1
$$

S. $(x-h)^{2}+(y-k)^{2}=r^{2}$, Differentiating twice,
$(x-h)+(y-k) y_{1}=0,1+(y-k) y_{2}+y_{1}^{2}=0$
$\therefore \quad y-k=-\frac{\left(1+y_{1}^{2}\right)}{y_{2}}, x-h=\frac{y_{1}}{y_{2}}\left(1+y_{1}^{2}\right)$
$\therefore \quad y_{1}^{2}\left(1+y_{1}^{2}\right)^{2}+\left(1+y_{1}^{2}\right)^{2}=r^{2} y_{2}^{2}$
or $r^{2} y_{2}^{2}=\left(1+y_{1}^{2}\right)^{3} \therefore$ Degree is 2 .
$\diamond \diamond$
Your favourite MTG Books/Magazines available in madiya pradesh at

- Telang Book Corner - Bhopal

Ph: 0755-2741446; Mob: 9827058587, 9425301772

- Books N Books - Bhopal

Ph: 0755-2673602, 2574603; Mob: 9826086858, 9826431103

- UBS Publishers Distributors Pvt Ltd. - Bhopal

Ph: 0755-4203183, 4203193, 2555285; Mob: 9425013150

- Krishna Pustak Kendra - Gwalior

Ph: 0751-2625982; Mob: 9425118370, 9425110809, 8989475382

- New Bhartiya Prakashan - Gwalior Ph: 0751-2625534, 2423004; Mob: 9407079998
- Chelawat Book Depot - Indore Ph: 0731-3027430; Mob: 9926500362, 9479723775
- Shiv Shakti Book Centre - Indore Ph: 0731-2459956, 2459955; Mob: 9425063647
- Arun Prakashan - Indore

Ph: 0731-2454372, 4054544; Mob: 9826369234, 9425313294

- Bhaiya Store - Indore Ph: 0731-2531207, 2540166; Mob: 9425318103
- Case Traders - Indore Mob: 9827259249, 9827620395
- Chelawat Book Centre - Indore Mob: 9406666147
- Jain Book Palace - Indore Ph: 0371-4054817, 4054839; Mob: 9926636333
- Kitab Kunj - Indore Ph: 0731-4054442; Mob: 9826325258, 9926058881
- Sushil Prakashan - Indore Ph: 0731-2535892; Mob: 9425322330
- New Radhika Book Palace - Jabalpur Mob: 9425411566, 7614083315
- Shankar Competition Book House - Rewa Ph: 07662-403161, 421128; Mob: 9407041342
- M.P. Publishers \& Suppliers - Ujjain

Ph: 0734-2515680, 2514262; Mob: 9826099912

- O.K. Book Depot - Ujjain Mob: 9425091418

Visit "MTG IN YOUR CITY" on www.mtg.in to locate nearest book seller OR write to info@mtg.in OR call

0124-6601200 for further assistance.

Subscribe to MTG magazines today.

Our 2017 offers are here. Pick the combo best suited for your needs. Fill-in the Subscription Form at the bottom and mail it to us today. If in a rush, log on to www.mtg.in now to subscribe online.
*On cover price of ₹ $30 /$ - each.

About MTG's Magazines

Perfect for students who like to prepare at a steady pace, MTG's magazines-Physics For You, Chemistry Today, Mathematics Today \& Biology Today-ensure you practice bit by bit, month by month, to build all-round command over key subjects. Did you know these magazines are the only source for solved test papers of all national and state level engineering and medical college entrance exams?

- Practice steadily, paced month by month, with very-similar \& model test papers
- Self-assessment tests for you to evaluate your readiness and confidence for the big exams
- Content put together by a team
comprising experts and members from MTG's well-experienced Editorial Board
- Stay up-to-date with important information such as examination dates, trends \& changes in syllabi
- All-round skill enhancement -
confidence-building exercises, new studying techniques, time management, even advice from past JEE/NEET toppers
Bonus: Exposure to competition at a global level, with questions from Intl. Olympiads \& Contests

SUBSCRIPTION FORM

Please accept my subscription to:
Note: Magazines are despatched by Book-Post on $4^{\text {th }}$ of every month (each magazine separately).

\checkmark Tick the appropriate box.

PCMB combo

$\square 1 \mathrm{yr}$ ₹ 1,000 (save ₹ 440)
PCM combo
1 yr: ₹ 900
(save ₹ 180)
PCB combo
1 yr ₹ 900
(save ₹ 180)

Individual magazines

\square Physics	\square Chemistry	\square Math		\square Biology
1 yr: ₹ 330 (save ₹ 30)		$\begin{aligned} & \text { r: ₹ } 600 \\ & \text { e ₹ } 120 \text {) } \end{aligned}$		3 yr ₹ ₹ 775 (save ₹ 305) (save₹ 305)

$$
\begin{aligned}
& \text { Enclose Demand Draft favouring MTG Learning Media (P) Ltd, payable at New Delhi. } \\
& \text { You can also pay via Money Orders. Mail this Subscription Form to Subscription Dept, }
\end{aligned}
$$

Want the magazines by courier; add the courier charges given below:

\qquad

Email

[^1]
mtG

How to choose the right answer, fast?

The answer is practice...

Our team has seen that in NEET, AIIMS, JIPMER and JEE, Multiple Choice Questions (MCQs) are based on the NCERT syllabus. Largely !! With Objective NCERT at your FINGERTIPS, you can become a pro at handling MCQs. Practice to increase your accuracy and improve timing with a bank of over 15,000 questions, all framed from NCERT course books. Don't take our word, have a look what some of our readers have to say...

Features:

- Chapterwise student-friendly synopses for quick-and-easy revision
- Topicwise MCQs to check your progress
- NCERT Exemplar MCQs
- Assertion \& Reason questions for an edge in your AllMS/JEE preparation
- HOTS MCQs to boost your concepts
- 6 Practice papers for self-assessment

Sanjay Shankar says, "Awesome book!! Everything is just perfect and the collaboration of the $11^{\text {th }}$ and $12^{\text {th }}$ std. just made it easier for us and with this less price. I will definitely recommend this book for every NEET preparing student."
Shweta says, "Must read for good score in NEET. Many questions in NEET are from this book in last 3 years. It also covers outside NCERT topics. Nice book."
Vijay says, "This book is ideal for practising MCQs (chapterwise). It appreciably covers all the important as well as less important questions. HOTS and sample question papers are provided as well. No demerits of the book can be listed. Though, it is not light weighted and thus cannot be carried, you wouldn't get bored revising each chapter from the revision section and then answering the questions. The language is appropriate and lucid as well as easy to understand. "
S. J. Uday says, "It is an awesome book. Firstly I was scared how it will be, but after having it, I was amazed. One must have this book who is interested in going for the NEET examination."
Sonal Singh says, "Book is very good. As it contains all the topicwise questions from every topic of NCERT, one can develop a question solving ability and also understand the basic concepts"
Sunehri says,"This book contains over 150 MCQs in each chapter, has categories like MCQs, NCERT, HOTS based questions, AIIMS assertion reasoning questions. Every chapter gives a short summary of chapter. Great book for entrance exams like NEET, AIIMS etc."
Prashant says, "The book is really awesome. It makes you cover up whole NCERT in a simple way. Solving the problems can increase your performance in exam. I would suggest each \& every NEET candidate to solve the book. The book is also error free; not like other publications books which are full of errors."
Arka says, "It is a nice question bank of NCERT. I think it is the best of its kind. The book is a must to prepare for NEET."

Scan now with your smartphone or tablet Application to read QR codes required
$m \in G$

MTG Learning Media (P) Ltd.
Plot \# 99, Sector 44, Gurgaon - 122003 (HR)

Available at all leading book shops throughout India.
For more information or for help in placing your order, Call 0124-6601200 or e-mail:info@mtg.in

Study right. Dig deep. Build a solid foundation for success in JEE Main

Are you a do-it-yourself type of a student? Then for success in JEE Main, choose MTG's JEE Main combo, comprising coursebooks for Physics, Chemistry \& Mathematics. This combo is all class 11 and 12 students need for a solid and deep understanding of concepts in these three key subjects.

FEATURES:

- Based on latest pattern of JEE Main
- Full of graphic illustrations \& MCQs for deep understanding of concepts
- Covers the entire syllabus
- NCERT Drill MCQs framed from NCERT Books
- 11 Years (2017-2007) Previous Years MCQs of JEE Main / AIEEE
- 2017 JEE Main (Offline \& Online) Solved Paper included

Note: Coursebooks are also available separately.

Scan now with your smartphone or tablet Application to read $Q R$ codes required

Available at all leading book shops throughout India. To buy online visit www.mtg.in.
For more information or for help in placing your order, call 0124-6601200 or e-mail: info@mtg.in

$m \in G$

How can history help to succeed in JEE!

Wouldn't you agree that previous years' test papers provide great insights into the pattern and structure of future tests. Studies corroborate this, and have shown that successful JEE aspirants begin by familiarising themselves with problems that have appeared in past JEEs, as early as 2 years in advance.

Which is why the MTG team created 40 Years Chapterwise Solutions. The most comprehensive 'real' question bank out there, complete with detailed solutions by experts. An invaluable aid in your quest for success in JEE. Visit www.mtg.in to order online. Or simply scan the QR code to check for current offers.

Note: 40 Years Chapterwise Solutions are also available for each subject separately.

Available at all leading book shops throughout India. To buy online visit www.mtg.in.
For more information or for help in placing your order, call 0124-6601200 or e-mail info@mtg.in

[^0]: * Alok Kumar is a winner of INDIAN NATIONAL MATHEMATICS OLYMPIAD (INMO-91). He trains IIT and Olympiad aspirants.

[^1]: E-mail subscription@mtg.in. Visit www.mtg.in to subscribe online. Call (0)8800255334/5 for more info.

